光伏技术前沿:综述

A. F. Morgera, V. Lughi
{"title":"光伏技术前沿:综述","authors":"A. F. Morgera, V. Lughi","doi":"10.1109/ICCEP.2015.7177610","DOIUrl":null,"url":null,"abstract":"As photovoltaics (PV) cost reduction driven by economies of scale is approaching a limit, technological breakthroughs are likely to become again the next driver for further growth. In this paper, we review the most significant photovoltaic (PV) device technologies. First, commercially available cells and modules are briefly surveyed, focusing on the innovations that have recently reached the market, both in silicon-based and thin-film devices. We then identify some significant pre-market technologies such as organic PV and dye-sensitized solar cells, outlining the advantages as well as the obstacles that still hinder large-scale commercialization. A critical review is finally presented for the most promising approaches and some emerging technologies currently under investigation for simultaneously meeting the three key objectives in PV research, all aiming at further reducing the cost per kWh: low fabrication cost, systems integration, and overcoming the standard limit for photoconversion efficiency. All approaches heavily rely on nanotechnology, as the key mechanisms involved in PV conversion occur at the nanoscale.","PeriodicalId":423870,"journal":{"name":"2015 International Conference on Clean Electrical Power (ICCEP)","volume":" 37","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Frontiers of photovoltaic technology: A review\",\"authors\":\"A. F. Morgera, V. Lughi\",\"doi\":\"10.1109/ICCEP.2015.7177610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As photovoltaics (PV) cost reduction driven by economies of scale is approaching a limit, technological breakthroughs are likely to become again the next driver for further growth. In this paper, we review the most significant photovoltaic (PV) device technologies. First, commercially available cells and modules are briefly surveyed, focusing on the innovations that have recently reached the market, both in silicon-based and thin-film devices. We then identify some significant pre-market technologies such as organic PV and dye-sensitized solar cells, outlining the advantages as well as the obstacles that still hinder large-scale commercialization. A critical review is finally presented for the most promising approaches and some emerging technologies currently under investigation for simultaneously meeting the three key objectives in PV research, all aiming at further reducing the cost per kWh: low fabrication cost, systems integration, and overcoming the standard limit for photoconversion efficiency. All approaches heavily rely on nanotechnology, as the key mechanisms involved in PV conversion occur at the nanoscale.\",\"PeriodicalId\":423870,\"journal\":{\"name\":\"2015 International Conference on Clean Electrical Power (ICCEP)\",\"volume\":\" 37\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Clean Electrical Power (ICCEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEP.2015.7177610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Clean Electrical Power (ICCEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEP.2015.7177610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

随着规模经济驱动的光伏成本下降接近极限,技术突破可能再次成为进一步增长的下一个驱动力。在本文中,我们回顾了最重要的光伏(PV)器件技术。首先,简要地调查了商业上可用的电池和模块,重点是最近进入市场的创新,包括硅基和薄膜器件。然后,我们确定了一些重要的上市前技术,如有机光伏和染料敏化太阳能电池,概述了其优势以及仍然阻碍大规模商业化的障碍。最后,对目前正在研究的最有前途的方法和一些新兴技术进行了批判性的回顾,以同时满足光伏研究的三个关键目标,所有这些目标都旨在进一步降低每千瓦时的成本:低制造成本,系统集成和克服光转换效率的标准限制。所有的方法都严重依赖于纳米技术,因为涉及光伏转换的关键机制发生在纳米尺度上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frontiers of photovoltaic technology: A review
As photovoltaics (PV) cost reduction driven by economies of scale is approaching a limit, technological breakthroughs are likely to become again the next driver for further growth. In this paper, we review the most significant photovoltaic (PV) device technologies. First, commercially available cells and modules are briefly surveyed, focusing on the innovations that have recently reached the market, both in silicon-based and thin-film devices. We then identify some significant pre-market technologies such as organic PV and dye-sensitized solar cells, outlining the advantages as well as the obstacles that still hinder large-scale commercialization. A critical review is finally presented for the most promising approaches and some emerging technologies currently under investigation for simultaneously meeting the three key objectives in PV research, all aiming at further reducing the cost per kWh: low fabrication cost, systems integration, and overcoming the standard limit for photoconversion efficiency. All approaches heavily rely on nanotechnology, as the key mechanisms involved in PV conversion occur at the nanoscale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信