非线性系统的线性对称性

D. Cheng, Guowu Yang
{"title":"非线性系统的线性对称性","authors":"D. Cheng, Guowu Yang","doi":"10.1109/CDC.2001.981164","DOIUrl":null,"url":null,"abstract":"This paper tackles the symmetries of control systems. Main attention has been focused on the linear symmetry of affine nonlinear systems. That is, the symmetry under the action of a sub-group of general linear group GL(n,R). The structure of the groups of symmetry and their Lie algebras is investigated. Using left semi-tensor product, a complete classification of symmetric plane systems is presented. Finally, a set of linear algebraic equations are presented, whose solutions provide the largest Lie algebra. Its connected Lie group is the largest one, with which the system is symmetric.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear symmetry of nonlinear systems\",\"authors\":\"D. Cheng, Guowu Yang\",\"doi\":\"10.1109/CDC.2001.981164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles the symmetries of control systems. Main attention has been focused on the linear symmetry of affine nonlinear systems. That is, the symmetry under the action of a sub-group of general linear group GL(n,R). The structure of the groups of symmetry and their Lie algebras is investigated. Using left semi-tensor product, a complete classification of symmetric plane systems is presented. Finally, a set of linear algebraic equations are presented, whose solutions provide the largest Lie algebra. Its connected Lie group is the largest one, with which the system is symmetric.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.981164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.981164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究控制系统的对称性问题。人们主要关注仿射非线性系统的线性对称性。即一般线性群GL(n,R)的子群作用下的对称性。研究了对称群及其李代数的结构。利用左半张量积,给出了对称平面系统的完全分类。最后,给出了一组线性代数方程,其解提供了最大李代数。它的连通李群是最大的,系统与之对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear symmetry of nonlinear systems
This paper tackles the symmetries of control systems. Main attention has been focused on the linear symmetry of affine nonlinear systems. That is, the symmetry under the action of a sub-group of general linear group GL(n,R). The structure of the groups of symmetry and their Lie algebras is investigated. Using left semi-tensor product, a complete classification of symmetric plane systems is presented. Finally, a set of linear algebraic equations are presented, whose solutions provide the largest Lie algebra. Its connected Lie group is the largest one, with which the system is symmetric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信