多目标分层2G/3G移动性管理优化:小生境Pareto遗传算法

T. Ozugur, A. Bellary, F. Sarkar
{"title":"多目标分层2G/3G移动性管理优化:小生境Pareto遗传算法","authors":"T. Ozugur, A. Bellary, F. Sarkar","doi":"10.1109/GLOCOM.2001.966368","DOIUrl":null,"url":null,"abstract":"We first propose four-layer optimization for a UMTS coverage area: (i) cell-oriented intra-SGSN (serving GPRS service node) layer, which is optimized RAs (routing areas) covering the intra-SGSN signaling cost, paging cost and RA load balancing; (ii) RA-oriented intra-MSC (mobile switching centre) layer, which is optimized location areas (LA) covering the intra-MSC signaling cost and LA load balancing; (iii) RA-oriented inter-SGSN layer, which is optimized SGSN coverage areas covering the inter-SGSN signaling cost, RNC (radio network controller) and SGSN load balancing; (iv) LA-oriented inter-MSC layer, which is optimized MSC coverage areas covering the inter-MSC signaling cost and MSC load balancing. We focus on RA optimization, namely layers (i) and (iii). The optimization of MSC coverage areas and LAs is performed in a similar manner. We propose a schema-based niched Pareto genetic algorithm, which deals with multiple objectives by incorporating the concept of Pareto domination in its selection operator, and applying a niching pressure to spread its population out along the Pareto optimal tradeoff surface. The proposed genetic algorithm uses a schema-based partially matching crossover using tournaments of n size, where the crossover pairs are chosen in two steps, first based on the class ranking and then schema ranking. New offspring are modified using the geographical footprints to converge to the optimal solution faster.","PeriodicalId":346622,"journal":{"name":"GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270)","volume":" 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multiobjective hierarchical 2G/3G mobility management optimization: niched Pareto genetic algorithm\",\"authors\":\"T. Ozugur, A. Bellary, F. Sarkar\",\"doi\":\"10.1109/GLOCOM.2001.966368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first propose four-layer optimization for a UMTS coverage area: (i) cell-oriented intra-SGSN (serving GPRS service node) layer, which is optimized RAs (routing areas) covering the intra-SGSN signaling cost, paging cost and RA load balancing; (ii) RA-oriented intra-MSC (mobile switching centre) layer, which is optimized location areas (LA) covering the intra-MSC signaling cost and LA load balancing; (iii) RA-oriented inter-SGSN layer, which is optimized SGSN coverage areas covering the inter-SGSN signaling cost, RNC (radio network controller) and SGSN load balancing; (iv) LA-oriented inter-MSC layer, which is optimized MSC coverage areas covering the inter-MSC signaling cost and MSC load balancing. We focus on RA optimization, namely layers (i) and (iii). The optimization of MSC coverage areas and LAs is performed in a similar manner. We propose a schema-based niched Pareto genetic algorithm, which deals with multiple objectives by incorporating the concept of Pareto domination in its selection operator, and applying a niching pressure to spread its population out along the Pareto optimal tradeoff surface. The proposed genetic algorithm uses a schema-based partially matching crossover using tournaments of n size, where the crossover pairs are chosen in two steps, first based on the class ranking and then schema ranking. New offspring are modified using the geographical footprints to converge to the optimal solution faster.\",\"PeriodicalId\":346622,\"journal\":{\"name\":\"GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270)\",\"volume\":\" 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2001.966368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2001.966368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们首先提出了UMTS覆盖区域的四层优化:(i)面向cell的intra-SGSN(服务GPRS服务节点)层,该层是优化的RAs(路由区域),覆盖了intra-SGSN信令成本、寻呼成本和RA负载平衡;(ii)面向ra的intra-MSC(移动交换中心)层,它是覆盖intra-MSC信令成本和LA负载平衡的优化位置区域(LA);(iii)面向ra的SGSN间层,优化SGSN覆盖区域,覆盖SGSN间信令成本、RNC(无线网络控制器)和SGSN负载均衡;(iv)面向la的inter-MSC层,是优化的MSC覆盖区域,覆盖inter-MSC信令成本和MSC负载均衡。我们专注于RA优化,即(i)层和(iii)层。MSC覆盖区域和LAs的优化以类似的方式进行。我们提出了一种基于模式的小生境帕累托遗传算法,该算法通过在其选择算子中加入帕累托支配的概念来处理多个目标,并应用小生境压力将其种群沿帕累托最优权衡面扩散。提出的遗传算法使用基于模式的部分匹配交叉,使用n大小的比赛,其中交叉对的选择分两步进行,首先根据类别排名,然后根据模式排名。利用地理足迹对新子代进行修改,以更快地收敛到最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobjective hierarchical 2G/3G mobility management optimization: niched Pareto genetic algorithm
We first propose four-layer optimization for a UMTS coverage area: (i) cell-oriented intra-SGSN (serving GPRS service node) layer, which is optimized RAs (routing areas) covering the intra-SGSN signaling cost, paging cost and RA load balancing; (ii) RA-oriented intra-MSC (mobile switching centre) layer, which is optimized location areas (LA) covering the intra-MSC signaling cost and LA load balancing; (iii) RA-oriented inter-SGSN layer, which is optimized SGSN coverage areas covering the inter-SGSN signaling cost, RNC (radio network controller) and SGSN load balancing; (iv) LA-oriented inter-MSC layer, which is optimized MSC coverage areas covering the inter-MSC signaling cost and MSC load balancing. We focus on RA optimization, namely layers (i) and (iii). The optimization of MSC coverage areas and LAs is performed in a similar manner. We propose a schema-based niched Pareto genetic algorithm, which deals with multiple objectives by incorporating the concept of Pareto domination in its selection operator, and applying a niching pressure to spread its population out along the Pareto optimal tradeoff surface. The proposed genetic algorithm uses a schema-based partially matching crossover using tournaments of n size, where the crossover pairs are chosen in two steps, first based on the class ranking and then schema ranking. New offspring are modified using the geographical footprints to converge to the optimal solution faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信