Rahatara Ferdousi, Fedwa Laamarti, Chunsheng Yang, Abdulmotaleb El Saddik
{"title":"RailTwin:铁路的数字孪生框架","authors":"Rahatara Ferdousi, Fedwa Laamarti, Chunsheng Yang, Abdulmotaleb El Saddik","doi":"10.1109/CASE49997.2022.9926529","DOIUrl":null,"url":null,"abstract":"This study aims at providing a conceptualized framework for railway to realize the Digital Twin (DT) beyond traditional structural modeling or information systems. First, we deduce a generic formula that shows that DT estimates the future states and decides actions beforehand. Then, based on this formula, we design a generic framework called RailTwin. The framework combines the insight of current states, the foresight representing the prediction of the future states, and the oversight based on the current and future state to enable automation and actuation. The key enabler of this framework to obtain these states is Artificial Intelligence (AI) technologies, including Deep Learning, Transfer Learning, Reinforcement Learning, and Explainable AI. We present a use case for asset health inspection and monitoring through the proposed framework.","PeriodicalId":325778,"journal":{"name":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","volume":" 28","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RailTwin: A Digital Twin Framework For Railway\",\"authors\":\"Rahatara Ferdousi, Fedwa Laamarti, Chunsheng Yang, Abdulmotaleb El Saddik\",\"doi\":\"10.1109/CASE49997.2022.9926529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims at providing a conceptualized framework for railway to realize the Digital Twin (DT) beyond traditional structural modeling or information systems. First, we deduce a generic formula that shows that DT estimates the future states and decides actions beforehand. Then, based on this formula, we design a generic framework called RailTwin. The framework combines the insight of current states, the foresight representing the prediction of the future states, and the oversight based on the current and future state to enable automation and actuation. The key enabler of this framework to obtain these states is Artificial Intelligence (AI) technologies, including Deep Learning, Transfer Learning, Reinforcement Learning, and Explainable AI. We present a use case for asset health inspection and monitoring through the proposed framework.\",\"PeriodicalId\":325778,\"journal\":{\"name\":\"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\" 28\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49997.2022.9926529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49997.2022.9926529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This study aims at providing a conceptualized framework for railway to realize the Digital Twin (DT) beyond traditional structural modeling or information systems. First, we deduce a generic formula that shows that DT estimates the future states and decides actions beforehand. Then, based on this formula, we design a generic framework called RailTwin. The framework combines the insight of current states, the foresight representing the prediction of the future states, and the oversight based on the current and future state to enable automation and actuation. The key enabler of this framework to obtain these states is Artificial Intelligence (AI) technologies, including Deep Learning, Transfer Learning, Reinforcement Learning, and Explainable AI. We present a use case for asset health inspection and monitoring through the proposed framework.