多用户检测的决策导向算法

G. Moustakides
{"title":"多用户检测的决策导向算法","authors":"G. Moustakides","doi":"10.1109/ISIT.2001.935871","DOIUrl":null,"url":null,"abstract":"We present a class of constraint LMS-like adaptive linear detection schemes that constitutes a generalization to the popular blind adaptive detector. We show that, contrary to the general belief, the conventional LMS and its constraint version, when in training mode, do not necessarily outperform the blind LMS of Honig et al. (1995). Trained algorithms uniformly outperform their blind counterparts only if they incorporate knowledge of the amplitude of the user of interest. Decision directed versions of such algorithms are shown to be equally efficient as their trained prototypes and significantly better than the blind versions.","PeriodicalId":433761,"journal":{"name":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","volume":" 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Decision directed algorithms for multiuser detection\",\"authors\":\"G. Moustakides\",\"doi\":\"10.1109/ISIT.2001.935871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a class of constraint LMS-like adaptive linear detection schemes that constitutes a generalization to the popular blind adaptive detector. We show that, contrary to the general belief, the conventional LMS and its constraint version, when in training mode, do not necessarily outperform the blind LMS of Honig et al. (1995). Trained algorithms uniformly outperform their blind counterparts only if they incorporate knowledge of the amplitude of the user of interest. Decision directed versions of such algorithms are shown to be equally efficient as their trained prototypes and significantly better than the blind versions.\",\"PeriodicalId\":433761,\"journal\":{\"name\":\"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)\",\"volume\":\" 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2001.935871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2001.935871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一类约束类lms自适应线性检测方案,它是对流行的盲自适应检测器的推广。我们的研究表明,与一般观点相反,在训练模式下,传统LMS及其约束版本并不一定优于Honig等人(1995)的盲LMS。经过训练的算法只有在纳入用户感兴趣的振幅的知识时,才能一致地优于盲算法。这些算法的决策导向版本被证明与其训练过的原型一样有效,并且明显优于盲版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decision directed algorithms for multiuser detection
We present a class of constraint LMS-like adaptive linear detection schemes that constitutes a generalization to the popular blind adaptive detector. We show that, contrary to the general belief, the conventional LMS and its constraint version, when in training mode, do not necessarily outperform the blind LMS of Honig et al. (1995). Trained algorithms uniformly outperform their blind counterparts only if they incorporate knowledge of the amplitude of the user of interest. Decision directed versions of such algorithms are shown to be equally efficient as their trained prototypes and significantly better than the blind versions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信