HyKKT:求解KKT线性系统的混合直接迭代法

Shaked Regev, Nai-yuan Chiang, Eric F Darve, C. Petra, M. Saunders, K. Swirydowicz, Slaven Pelevs
{"title":"HyKKT:求解KKT线性系统的混合直接迭代法","authors":"Shaked Regev, Nai-yuan Chiang, Eric F Darve, C. Petra, M. Saunders, K. Swirydowicz, Slaven Pelevs","doi":"10.1080/10556788.2022.2124990","DOIUrl":null,"url":null,"abstract":"We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where is a lower triangular matrix and is or block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBLT factorization of the full system.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":" 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"HyKKT: a hybrid direct-iterative method for solving KKT linear systems\",\"authors\":\"Shaked Regev, Nai-yuan Chiang, Eric F Darve, C. Petra, M. Saunders, K. Swirydowicz, Slaven Pelevs\",\"doi\":\"10.1080/10556788.2022.2124990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where is a lower triangular matrix and is or block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBLT factorization of the full system.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\" 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2124990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2124990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对非线性优化的内部方法中出现的大型不确定线性系统,提出了一种求解策略。该方法适合在图形处理单元(gpu)等硬件加速器上实现。目前稀疏不定系统的金标准是LBLT分解,其中是一个下三角矩阵,是或块对角线。然而,这需要旋转,这大大增加了通信成本并降低了gpu的性能。我们的方法通过求解多个较小的正定系统来解决一个大的不确定系统,在每次迭代中使用舒尔补上的迭代求解器和内部直接求解(通过Cholesky分解)。Cholesky在没有旋转的情况下是稳定的,从而减少了通信并允许符号分解的重用。我们证明了我们的方法在大型最优潮流问题上的实用性,并表明它可以有效地利用gpu并优于整个系统的LBLT分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HyKKT: a hybrid direct-iterative method for solving KKT linear systems
We propose a solution strategy for the large indefinite linear systems arising in interior methods for nonlinear optimization. The method is suitable for implementation on hardware accelerators such as graphical processing units (GPUs). The current gold standard for sparse indefinite systems is the LBLT factorization where is a lower triangular matrix and is or block diagonal. However, this requires pivoting, which substantially increases communication cost and degrades performance on GPUs. Our approach solves a large indefinite system by solving multiple smaller positive definite systems, using an iterative solver on the Schur complement and an inner direct solve (via Cholesky factorization) within each iteration. Cholesky is stable without pivoting, thereby reducing communication and allowing reuse of the symbolic factorization. We demonstrate the practicality of our approach on large optimal power flow problems and show that it can efficiently utilize GPUs and outperform LBLT factorization of the full system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信