仅从强度数据重建三维波场:变分逆成像技术

V. Katkovnik, Artem Migukin, J. Astola
{"title":"仅从强度数据重建三维波场:变分逆成像技术","authors":"V. Katkovnik, Artem Migukin, J. Astola","doi":"10.1109/WIO.2010.5582485","DOIUrl":null,"url":null,"abstract":"We present a variational approach to obtain a reconstruction of module and phase of a 3D wave field from intensity-only measurements on two or more sensor planes at different axial positions. The objective functional consists of a data fidelity term and a regularizer. The fidelity term corresponds to the likelihood function derived for the Gaussian noisy observations of the wave field intensities (powers). The wave field reconstruction is framed as a constrained nonlinear optimization with respect to a 2D object wave field and is based on the augmented Lagrangian technique. The main goal is to design an algorithm which is more efficient and accurate than the conventional ones such as the well-known Gerchberg-Saxton algorithms and their multiple modifications. As a further development we discuss a variational approach using a transform domain prior on phase and module of the 2D object wave field.","PeriodicalId":201478,"journal":{"name":"2010 9th Euro-American Workshop on Information Optics","volume":" 93","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D wave field reconstruction from intensity-only data: Variational inverse imaging techniques\",\"authors\":\"V. Katkovnik, Artem Migukin, J. Astola\",\"doi\":\"10.1109/WIO.2010.5582485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a variational approach to obtain a reconstruction of module and phase of a 3D wave field from intensity-only measurements on two or more sensor planes at different axial positions. The objective functional consists of a data fidelity term and a regularizer. The fidelity term corresponds to the likelihood function derived for the Gaussian noisy observations of the wave field intensities (powers). The wave field reconstruction is framed as a constrained nonlinear optimization with respect to a 2D object wave field and is based on the augmented Lagrangian technique. The main goal is to design an algorithm which is more efficient and accurate than the conventional ones such as the well-known Gerchberg-Saxton algorithms and their multiple modifications. As a further development we discuss a variational approach using a transform domain prior on phase and module of the 2D object wave field.\",\"PeriodicalId\":201478,\"journal\":{\"name\":\"2010 9th Euro-American Workshop on Information Optics\",\"volume\":\" 93\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 9th Euro-American Workshop on Information Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIO.2010.5582485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 9th Euro-American Workshop on Information Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIO.2010.5582485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种变分方法,从两个或多个传感器平面在不同轴向位置上的强度测量中获得三维波场的模块和相位的重建。目标函数由数据保真度项和正则化器组成。保真度项对应于波场强度(幂)的高斯噪声观测所得的似然函数。波场重建是基于增广拉格朗日技术的二维目标波场约束非线性优化。主要目标是设计一种比传统算法(如著名的Gerchberg-Saxton算法及其多次修改)更高效、更准确的算法。作为进一步的发展,我们讨论了一种使用二维物体波场的相位和模块的变换域先验的变分方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D wave field reconstruction from intensity-only data: Variational inverse imaging techniques
We present a variational approach to obtain a reconstruction of module and phase of a 3D wave field from intensity-only measurements on two or more sensor planes at different axial positions. The objective functional consists of a data fidelity term and a regularizer. The fidelity term corresponds to the likelihood function derived for the Gaussian noisy observations of the wave field intensities (powers). The wave field reconstruction is framed as a constrained nonlinear optimization with respect to a 2D object wave field and is based on the augmented Lagrangian technique. The main goal is to design an algorithm which is more efficient and accurate than the conventional ones such as the well-known Gerchberg-Saxton algorithms and their multiple modifications. As a further development we discuss a variational approach using a transform domain prior on phase and module of the 2D object wave field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信