从好的到坏的:使垃圾邮件检测更容易

Li Zhao, Qiancheng Jiang, Yan Zhang
{"title":"从好的到坏的:使垃圾邮件检测更容易","authors":"Li Zhao, Qiancheng Jiang, Yan Zhang","doi":"10.1109/CIT.2008.WORKSHOPS.49","DOIUrl":null,"url":null,"abstract":"Previous researches of the anti-spamming have proved that results can be greatly improved when bad seeds are used together with good ones. However, how to select bad seeds efficiently is a big challenge. In this paper we discuss how to select bad seeds based on good seeds selection. The experiments running on over 13M Web pages show that our method is practical and time-saving. Moreover, the selected bad seeds can enhance the performance of a good seed set on effectively filtering out spam from normal pages.","PeriodicalId":155998,"journal":{"name":"2008 IEEE 8th International Conference on Computer and Information Technology Workshops","volume":" 23","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"From Good to Bad Ones: Making Spam Detection Easier\",\"authors\":\"Li Zhao, Qiancheng Jiang, Yan Zhang\",\"doi\":\"10.1109/CIT.2008.WORKSHOPS.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous researches of the anti-spamming have proved that results can be greatly improved when bad seeds are used together with good ones. However, how to select bad seeds efficiently is a big challenge. In this paper we discuss how to select bad seeds based on good seeds selection. The experiments running on over 13M Web pages show that our method is practical and time-saving. Moreover, the selected bad seeds can enhance the performance of a good seed set on effectively filtering out spam from normal pages.\",\"PeriodicalId\":155998,\"journal\":{\"name\":\"2008 IEEE 8th International Conference on Computer and Information Technology Workshops\",\"volume\":\" 23\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 8th International Conference on Computer and Information Technology Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIT.2008.WORKSHOPS.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 8th International Conference on Computer and Information Technology Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIT.2008.WORKSHOPS.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

以往的反垃圾邮件研究已经证明,将好种子和坏种子结合使用,可以大大提高反垃圾邮件的效果。然而,如何有效地选择不良种子是一个很大的挑战。本文讨论了如何在选择好种子的基础上选择坏种子。在超过13M的网页上运行的实验表明,我们的方法是实用和节省时间的。此外,选择的坏种子可以提高好的种子集的性能,有效地过滤掉正常页面中的垃圾邮件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Good to Bad Ones: Making Spam Detection Easier
Previous researches of the anti-spamming have proved that results can be greatly improved when bad seeds are used together with good ones. However, how to select bad seeds efficiently is a big challenge. In this paper we discuss how to select bad seeds based on good seeds selection. The experiments running on over 13M Web pages show that our method is practical and time-saving. Moreover, the selected bad seeds can enhance the performance of a good seed set on effectively filtering out spam from normal pages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信