燃气轮机长期性能退化的数据驱动模型选择研究

Yuan Liu, A. Banerjee, Houman Hanachi, Amar Kumar
{"title":"燃气轮机长期性能退化的数据驱动模型选择研究","authors":"Yuan Liu, A. Banerjee, Houman Hanachi, Amar Kumar","doi":"10.1109/ICPHM.2019.8819433","DOIUrl":null,"url":null,"abstract":"Performance of gas turbine engine (GTE) deteriorates with structural aging. The availability of operating data from GTE and capability to perform data analysis, provides an opportunity to identify long-term performance deterioration and relate to more difficult to detect structural degradation. In this work, performance analysis of a low power rating and partially loaded industrial GTE was carried out by using a model-free data analytic approach. A performance index (ratio of power generation to fuel consumption) is proposed as the metrics for monitoring the engine performance, and monitor the long-term degradation symptom. A comparative model selection study has been conducted among three multivariable models to select the best model describing long-term performance deterioration of the GTE.","PeriodicalId":113460,"journal":{"name":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":" October","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data-Driven Model Selection Study for Long-Term Performance Deterioration of Gas Turbines\",\"authors\":\"Yuan Liu, A. Banerjee, Houman Hanachi, Amar Kumar\",\"doi\":\"10.1109/ICPHM.2019.8819433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance of gas turbine engine (GTE) deteriorates with structural aging. The availability of operating data from GTE and capability to perform data analysis, provides an opportunity to identify long-term performance deterioration and relate to more difficult to detect structural degradation. In this work, performance analysis of a low power rating and partially loaded industrial GTE was carried out by using a model-free data analytic approach. A performance index (ratio of power generation to fuel consumption) is proposed as the metrics for monitoring the engine performance, and monitor the long-term degradation symptom. A comparative model selection study has been conducted among three multivariable models to select the best model describing long-term performance deterioration of the GTE.\",\"PeriodicalId\":113460,\"journal\":{\"name\":\"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\" October\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2019.8819433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2019.8819433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

燃气涡轮发动机的性能随着结构老化而恶化。GTE的运行数据的可用性和数据分析能力,为识别长期性能恶化提供了机会,并与更难以检测到的结构退化相关。在这项工作中,使用无模型数据分析方法对低额定功率和部分负载的工业GTE进行了性能分析。提出了一种性能指标(发电/油耗比)作为监测发动机性能的指标,并对长期劣化症状进行监测。在三个多变量模型中进行了模型选择比较研究,以选择描述GTE长期绩效恶化的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Model Selection Study for Long-Term Performance Deterioration of Gas Turbines
Performance of gas turbine engine (GTE) deteriorates with structural aging. The availability of operating data from GTE and capability to perform data analysis, provides an opportunity to identify long-term performance deterioration and relate to more difficult to detect structural degradation. In this work, performance analysis of a low power rating and partially loaded industrial GTE was carried out by using a model-free data analytic approach. A performance index (ratio of power generation to fuel consumption) is proposed as the metrics for monitoring the engine performance, and monitor the long-term degradation symptom. A comparative model selection study has been conducted among three multivariable models to select the best model describing long-term performance deterioration of the GTE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信