我们知道你在干什么!应用程序检测使用热数据

Philipp Miedl, R. Ahmed, L. Thiele
{"title":"我们知道你在干什么!应用程序检测使用热数据","authors":"Philipp Miedl, R. Ahmed, L. Thiele","doi":"10.4230/LITES.7.1.2","DOIUrl":null,"url":null,"abstract":"Modern mobile and embedded devices have high computing power which allows them to be used for multiple purposes. Therefore, applications with low security restrictions may execute on the same device as applications handling highly sensitive information. In such a setup, a security risk occurs if it is possible that an application uses system characteristics to gather information about another application on the same device.In this work, we present a method to leak sensitive runtime information by just using temperature sensor readings of a mobile device. We employ a Convolutional-Neural-Network, Long Short-Term Memory units and subsequent label sequence processing to identify the sequence of executed applications over time. To test our hypothesis we collect data from two state-of-the-art smartphones and real user usage patterns. We show an extensive evaluation using laboratory data, where we achieve labelling accuracies up to 90% and negligible timing error. Based on our analysis we state that the thermal information can be used to compromise sensitive user data and increase the vulnerability of mobile devices. A study based on data collected outside of the laboratory opens up various future directions for research.","PeriodicalId":376325,"journal":{"name":"Leibniz Trans. Embed. Syst.","volume":" October","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"We know what you're doing! Application detection using thermal data\",\"authors\":\"Philipp Miedl, R. Ahmed, L. Thiele\",\"doi\":\"10.4230/LITES.7.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern mobile and embedded devices have high computing power which allows them to be used for multiple purposes. Therefore, applications with low security restrictions may execute on the same device as applications handling highly sensitive information. In such a setup, a security risk occurs if it is possible that an application uses system characteristics to gather information about another application on the same device.In this work, we present a method to leak sensitive runtime information by just using temperature sensor readings of a mobile device. We employ a Convolutional-Neural-Network, Long Short-Term Memory units and subsequent label sequence processing to identify the sequence of executed applications over time. To test our hypothesis we collect data from two state-of-the-art smartphones and real user usage patterns. We show an extensive evaluation using laboratory data, where we achieve labelling accuracies up to 90% and negligible timing error. Based on our analysis we state that the thermal information can be used to compromise sensitive user data and increase the vulnerability of mobile devices. A study based on data collected outside of the laboratory opens up various future directions for research.\",\"PeriodicalId\":376325,\"journal\":{\"name\":\"Leibniz Trans. Embed. Syst.\",\"volume\":\" October\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leibniz Trans. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LITES.7.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leibniz Trans. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LITES.7.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代移动和嵌入式设备具有很高的计算能力,这使得它们可以用于多种目的。因此,具有低安全性限制的应用程序可以与处理高度敏感信息的应用程序在同一设备上执行。在这种设置中,如果一个应用程序可能使用系统特征来收集同一设备上另一个应用程序的信息,就会产生安全风险。在这项工作中,我们提出了一种方法,仅通过使用移动设备的温度传感器读数来泄漏敏感的运行时信息。我们使用卷积神经网络、长短期记忆单元和随后的标签序列处理来识别随时间推移执行的应用程序的顺序。为了验证我们的假设,我们收集了两款最先进的智能手机和真实用户使用模式的数据。我们使用实验室数据进行了广泛的评估,其中我们实现了高达90%的标签准确性和可忽略不计的定时误差。根据我们的分析,我们声明热信息可以用来破坏敏感用户数据并增加移动设备的脆弱性。一项基于实验室外收集的数据的研究为未来的研究开辟了各种方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
We know what you're doing! Application detection using thermal data
Modern mobile and embedded devices have high computing power which allows them to be used for multiple purposes. Therefore, applications with low security restrictions may execute on the same device as applications handling highly sensitive information. In such a setup, a security risk occurs if it is possible that an application uses system characteristics to gather information about another application on the same device.In this work, we present a method to leak sensitive runtime information by just using temperature sensor readings of a mobile device. We employ a Convolutional-Neural-Network, Long Short-Term Memory units and subsequent label sequence processing to identify the sequence of executed applications over time. To test our hypothesis we collect data from two state-of-the-art smartphones and real user usage patterns. We show an extensive evaluation using laboratory data, where we achieve labelling accuracies up to 90% and negligible timing error. Based on our analysis we state that the thermal information can be used to compromise sensitive user data and increase the vulnerability of mobile devices. A study based on data collected outside of the laboratory opens up various future directions for research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信