时变时滞随机神经网络的全局均方指数同步

Yinzhe Wu, J. Zhong, Ling Liu
{"title":"时变时滞随机神经网络的全局均方指数同步","authors":"Yinzhe Wu, J. Zhong, Ling Liu","doi":"10.1109/ICACI.2017.7974494","DOIUrl":null,"url":null,"abstract":"In this paper, we study the global mean square exponential synchronization of stochastic neural networks with time-varying delays (MSDNN). Two types of control scheme are served to synchronize a sort of MSDNN. A variety of synchronization qualifications depended on system structure are established by the means of Lyapunov function and itô formula. Some statistical examples are supplied to authenticate the results.","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"7 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global mean square exponential synchronization of stochastic neural networks with time-varying delays\",\"authors\":\"Yinzhe Wu, J. Zhong, Ling Liu\",\"doi\":\"10.1109/ICACI.2017.7974494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the global mean square exponential synchronization of stochastic neural networks with time-varying delays (MSDNN). Two types of control scheme are served to synchronize a sort of MSDNN. A variety of synchronization qualifications depended on system structure are established by the means of Lyapunov function and itô formula. Some statistical examples are supplied to authenticate the results.\",\"PeriodicalId\":260701,\"journal\":{\"name\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"7 21\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2017.7974494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了时变时滞随机神经网络的全局均方指数同步问题。两种类型的控制方案被用于同步一类msdn。利用Lyapunov函数和itô公式建立了不同系统结构的各种同步条件。给出了一些统计实例来验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global mean square exponential synchronization of stochastic neural networks with time-varying delays
In this paper, we study the global mean square exponential synchronization of stochastic neural networks with time-varying delays (MSDNN). Two types of control scheme are served to synchronize a sort of MSDNN. A variety of synchronization qualifications depended on system structure are established by the means of Lyapunov function and itô formula. Some statistical examples are supplied to authenticate the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信