图聚类的高效向量划分算法

J. Data Intell. Pub Date : 2020-06-01 DOI:10.26421/JDI1.2-1
Hiroaki Shiokawa, Y. Futamura
{"title":"图聚类的高效向量划分算法","authors":"Hiroaki Shiokawa, Y. Futamura","doi":"10.26421/JDI1.2-1","DOIUrl":null,"url":null,"abstract":"This paper addressed the problem of finding clusters included in graph-structured data such as Web graphs, social networks, and others. Graph clustering is one of the fundamental techniques for understanding structures present in the complex graphs such as Web pages, social networks, and others. In the Web and data mining communities, the modularity-based graph clustering algorithm is successfully used in many applications. However, it is difficult for the modularity-based methods to find fine-grained clusters hidden in large-scale graphs; the methods fail to reproduce the ground truth. In this paper, we present a novel modularity-based algorithm, \\textit{CAV}, that shows better clustering results than the traditional algorithm. The proposed algorithm employs a cohesiveness-aware vector partitioning into the graph spectral analysis to improve the clustering accuracy. Additionally, this paper also presents a novel efficient algorithm \\textit{P-CAV} for further improving the clustering speed of CAV; P-CAV is an extension of CAV that utilizes the thread-based parallelization on a many-core CPU. Our extensive experiments on synthetic and public datasets demonstrate the performance superiority of our approaches over the state-of-the-art approaches.","PeriodicalId":232625,"journal":{"name":"J. Data Intell.","volume":"114 15","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Vector Partitioning Algorithms for Graph Clustering\",\"authors\":\"Hiroaki Shiokawa, Y. Futamura\",\"doi\":\"10.26421/JDI1.2-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addressed the problem of finding clusters included in graph-structured data such as Web graphs, social networks, and others. Graph clustering is one of the fundamental techniques for understanding structures present in the complex graphs such as Web pages, social networks, and others. In the Web and data mining communities, the modularity-based graph clustering algorithm is successfully used in many applications. However, it is difficult for the modularity-based methods to find fine-grained clusters hidden in large-scale graphs; the methods fail to reproduce the ground truth. In this paper, we present a novel modularity-based algorithm, \\\\textit{CAV}, that shows better clustering results than the traditional algorithm. The proposed algorithm employs a cohesiveness-aware vector partitioning into the graph spectral analysis to improve the clustering accuracy. Additionally, this paper also presents a novel efficient algorithm \\\\textit{P-CAV} for further improving the clustering speed of CAV; P-CAV is an extension of CAV that utilizes the thread-based parallelization on a many-core CPU. Our extensive experiments on synthetic and public datasets demonstrate the performance superiority of our approaches over the state-of-the-art approaches.\",\"PeriodicalId\":232625,\"journal\":{\"name\":\"J. Data Intell.\",\"volume\":\"114 15\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Data Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/JDI1.2-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Data Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/JDI1.2-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了查找包含在图结构数据(如Web图、社交网络等)中的聚类的问题。图聚类是理解复杂图(如Web页面、社交网络等)中的结构的基本技术之一。在Web和数据挖掘领域,基于模块化的图聚类算法在许多应用中得到了成功的应用。然而,基于模块化的方法很难找到隐藏在大规模图中的细粒度聚类;这些方法无法再现真实情况。在本文中,我们提出了一种新的基于模块化的算法\textit{CAV},它比传统算法具有更好的聚类效果。该算法在图谱分析中引入了内聚性感知向量划分,提高了聚类精度。此外,本文还提出了一种新的高效算法\textit{P-CAV},进一步提高了CAV的聚类速度;P-CAV是CAV的扩展,它在多核CPU上利用基于线程的并行化。我们在合成和公共数据集上的广泛实验证明了我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Vector Partitioning Algorithms for Graph Clustering
This paper addressed the problem of finding clusters included in graph-structured data such as Web graphs, social networks, and others. Graph clustering is one of the fundamental techniques for understanding structures present in the complex graphs such as Web pages, social networks, and others. In the Web and data mining communities, the modularity-based graph clustering algorithm is successfully used in many applications. However, it is difficult for the modularity-based methods to find fine-grained clusters hidden in large-scale graphs; the methods fail to reproduce the ground truth. In this paper, we present a novel modularity-based algorithm, \textit{CAV}, that shows better clustering results than the traditional algorithm. The proposed algorithm employs a cohesiveness-aware vector partitioning into the graph spectral analysis to improve the clustering accuracy. Additionally, this paper also presents a novel efficient algorithm \textit{P-CAV} for further improving the clustering speed of CAV; P-CAV is an extension of CAV that utilizes the thread-based parallelization on a many-core CPU. Our extensive experiments on synthetic and public datasets demonstrate the performance superiority of our approaches over the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信