SPC产品码的线性规划快速ML解码

Kai Yang, Xiaodong Wang, J. Feldman
{"title":"SPC产品码的线性规划快速ML解码","authors":"Kai Yang, Xiaodong Wang, J. Feldman","doi":"10.1109/GLOCOM.2007.303","DOIUrl":null,"url":null,"abstract":"We consider the maximum-likelihood decoding of single parity-check (SPC) product code. We first prove that, for the family of SPC product code, the fractional distance and the pseudo-distance are both equal to the minimum Hamming distance. We then develop an efficient algorithm for decoding SPC product codes with low complexity and near maximum likelihood decoding performance at practical SNRs.","PeriodicalId":370937,"journal":{"name":"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference","volume":"16 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fast ML Decoding of SPC Product Code by Linear Programming Decoding\",\"authors\":\"Kai Yang, Xiaodong Wang, J. Feldman\",\"doi\":\"10.1109/GLOCOM.2007.303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the maximum-likelihood decoding of single parity-check (SPC) product code. We first prove that, for the family of SPC product code, the fractional distance and the pseudo-distance are both equal to the minimum Hamming distance. We then develop an efficient algorithm for decoding SPC product codes with low complexity and near maximum likelihood decoding performance at practical SNRs.\",\"PeriodicalId\":370937,\"journal\":{\"name\":\"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference\",\"volume\":\"16 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2007.303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2007.303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了单奇偶校验(SPC)产品码的最大似然译码。首先证明了对于SPC产品编码族,分数距离和伪距离都等于最小汉明距离。然后,我们开发了一种有效的算法,用于解码具有低复杂度和接近最大似然解码性能的SPC产品代码,在实际信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast ML Decoding of SPC Product Code by Linear Programming Decoding
We consider the maximum-likelihood decoding of single parity-check (SPC) product code. We first prove that, for the family of SPC product code, the fractional distance and the pseudo-distance are both equal to the minimum Hamming distance. We then develop an efficient algorithm for decoding SPC product codes with low complexity and near maximum likelihood decoding performance at practical SNRs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信