M. Pokrovskaya, S. Aleksandrova, A. Veselovsky, D. D. Zdanov, V. Pokrovsky, M. Eldarov, D. V. Grishin, Y. Gladilina, I.Yu. Toropigin, N. Sokolov
{"title":"具有抗端粒酶活性的红红螺旋菌l-天冬酰胺酶突变体的理化性质","authors":"M. Pokrovskaya, S. Aleksandrova, A. Veselovsky, D. D. Zdanov, V. Pokrovsky, M. Eldarov, D. V. Grishin, Y. Gladilina, I.Yu. Toropigin, N. Sokolov","doi":"10.18097/BMCRM00071","DOIUrl":null,"url":null,"abstract":"Rru_A3730 protein is a bacterial Rhodospirillum rubrum L-asparaginase (RrA), which is known by its anticancer activity. RrA variants with point amino acid substitutions in the region of 150 amino acids residues: RrA17N, K149E, RrAE149R, V150P, F151T, RrА17N, E149R, V150P, RrAE149R, V150P, showed antiproliferative properties, and also by their ability to suppress telomerase activity. This work is devoted to comparison of physical-chemical and catalytic properties of these mutant forms of RrA. It is shown that pH optimum is in the alkaline zone (8.5 – 9.3); L-glutaminase and D-asparaginase activity is respectively not more than 0.1% and 1.6% of L-asparaginase for all studied variants of RrA. The presence of the N17-terminal amino acid sequence MASMTGGQMGRGSSRQ of the capsid protein of bacteriophage T7 in the RrA structure leads to an increase in the thermal stability of mutant RrA analogues (from 50°C to 56°C) and their resistance to denaturation in the presence of 3 – 4 M urea. It is of Metal ions exhibit multidirectional effects on L-asparaginase activity of RrA. K+, Ca2+, Zn2+, Cs+, Co2+ in significantly affect the activity of L-asparaginase, while Mn2+, Cu2+, Fe3+ ions inhibit it. There was no correlation between antitelomerase (antiproliferative) activity and kinetic properties of mutant forms of L-asparaginase RrA.","PeriodicalId":286037,"journal":{"name":"Biomedical Chemistry: Research and Methods","volume":"70 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Physical-Chemical Properties of L-asparaginase Mutants From Rhodospirillum Rubrum which Showed Antitelomerase Activity\",\"authors\":\"M. Pokrovskaya, S. Aleksandrova, A. Veselovsky, D. D. Zdanov, V. Pokrovsky, M. Eldarov, D. V. Grishin, Y. Gladilina, I.Yu. Toropigin, N. Sokolov\",\"doi\":\"10.18097/BMCRM00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rru_A3730 protein is a bacterial Rhodospirillum rubrum L-asparaginase (RrA), which is known by its anticancer activity. RrA variants with point amino acid substitutions in the region of 150 amino acids residues: RrA17N, K149E, RrAE149R, V150P, F151T, RrА17N, E149R, V150P, RrAE149R, V150P, showed antiproliferative properties, and also by their ability to suppress telomerase activity. This work is devoted to comparison of physical-chemical and catalytic properties of these mutant forms of RrA. It is shown that pH optimum is in the alkaline zone (8.5 – 9.3); L-glutaminase and D-asparaginase activity is respectively not more than 0.1% and 1.6% of L-asparaginase for all studied variants of RrA. The presence of the N17-terminal amino acid sequence MASMTGGQMGRGSSRQ of the capsid protein of bacteriophage T7 in the RrA structure leads to an increase in the thermal stability of mutant RrA analogues (from 50°C to 56°C) and their resistance to denaturation in the presence of 3 – 4 M urea. It is of Metal ions exhibit multidirectional effects on L-asparaginase activity of RrA. K+, Ca2+, Zn2+, Cs+, Co2+ in significantly affect the activity of L-asparaginase, while Mn2+, Cu2+, Fe3+ ions inhibit it. There was no correlation between antitelomerase (antiproliferative) activity and kinetic properties of mutant forms of L-asparaginase RrA.\",\"PeriodicalId\":286037,\"journal\":{\"name\":\"Biomedical Chemistry: Research and Methods\",\"volume\":\"70 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Chemistry: Research and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18097/BMCRM00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chemistry: Research and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/BMCRM00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical-Chemical Properties of L-asparaginase Mutants From Rhodospirillum Rubrum which Showed Antitelomerase Activity
Rru_A3730 protein is a bacterial Rhodospirillum rubrum L-asparaginase (RrA), which is known by its anticancer activity. RrA variants with point amino acid substitutions in the region of 150 amino acids residues: RrA17N, K149E, RrAE149R, V150P, F151T, RrА17N, E149R, V150P, RrAE149R, V150P, showed antiproliferative properties, and also by their ability to suppress telomerase activity. This work is devoted to comparison of physical-chemical and catalytic properties of these mutant forms of RrA. It is shown that pH optimum is in the alkaline zone (8.5 – 9.3); L-glutaminase and D-asparaginase activity is respectively not more than 0.1% and 1.6% of L-asparaginase for all studied variants of RrA. The presence of the N17-terminal amino acid sequence MASMTGGQMGRGSSRQ of the capsid protein of bacteriophage T7 in the RrA structure leads to an increase in the thermal stability of mutant RrA analogues (from 50°C to 56°C) and their resistance to denaturation in the presence of 3 – 4 M urea. It is of Metal ions exhibit multidirectional effects on L-asparaginase activity of RrA. K+, Ca2+, Zn2+, Cs+, Co2+ in significantly affect the activity of L-asparaginase, while Mn2+, Cu2+, Fe3+ ions inhibit it. There was no correlation between antitelomerase (antiproliferative) activity and kinetic properties of mutant forms of L-asparaginase RrA.