{"title":"抑制低频振荡的GCSC稳定控制器设计","authors":"M. Hassan, A. Alhaj","doi":"10.22161/IJAEMS.4.8.11","DOIUrl":null,"url":null,"abstract":"This paper presents a systematic procedure for modeling and simulation of a power system equipped with FACTS type Gate Controlled Series Compensator (GCSC) based stabilizer controller. Single Machine Infinite Bus (SMIB) power system was investigated for evaluation of GCSC stabilizing controller for enhancing the overall dynamic system performance. PSO algorithm is employed to compute the optimal parameters of damping controller. Eigenvalues of system under various operating condition and nonlinear time domain simulation is employed to verify the effectiveness and robustness of GCSC stabilizing controller in damping low frequency oscillations (LFO) modes.","PeriodicalId":424230,"journal":{"name":"International Journal of Advanced engineering, Management and Science","volume":"78 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of GCSC Stabilizing Controller for Damping Low Frequency Oscillations\",\"authors\":\"M. Hassan, A. Alhaj\",\"doi\":\"10.22161/IJAEMS.4.8.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a systematic procedure for modeling and simulation of a power system equipped with FACTS type Gate Controlled Series Compensator (GCSC) based stabilizer controller. Single Machine Infinite Bus (SMIB) power system was investigated for evaluation of GCSC stabilizing controller for enhancing the overall dynamic system performance. PSO algorithm is employed to compute the optimal parameters of damping controller. Eigenvalues of system under various operating condition and nonlinear time domain simulation is employed to verify the effectiveness and robustness of GCSC stabilizing controller in damping low frequency oscillations (LFO) modes.\",\"PeriodicalId\":424230,\"journal\":{\"name\":\"International Journal of Advanced engineering, Management and Science\",\"volume\":\"78 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced engineering, Management and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22161/IJAEMS.4.8.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced engineering, Management and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22161/IJAEMS.4.8.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of GCSC Stabilizing Controller for Damping Low Frequency Oscillations
This paper presents a systematic procedure for modeling and simulation of a power system equipped with FACTS type Gate Controlled Series Compensator (GCSC) based stabilizer controller. Single Machine Infinite Bus (SMIB) power system was investigated for evaluation of GCSC stabilizing controller for enhancing the overall dynamic system performance. PSO algorithm is employed to compute the optimal parameters of damping controller. Eigenvalues of system under various operating condition and nonlinear time domain simulation is employed to verify the effectiveness and robustness of GCSC stabilizing controller in damping low frequency oscillations (LFO) modes.