Thimal Kempitiya, Daswin de Silva, Sachin Kahawala, D. Haputhanthri, D. Alahakoon, Evgeny Osipov
{"title":"基于序列编码的矢量符号方法参数化视觉位置识别","authors":"Thimal Kempitiya, Daswin de Silva, Sachin Kahawala, D. Haputhanthri, D. Alahakoon, Evgeny Osipov","doi":"10.1109/IJCNN55064.2022.9892397","DOIUrl":null,"url":null,"abstract":"Sequence-based methods for visual place recognition (VPR) have great importance due to their ability of additional information capture through the sequences compared to single image comparison. Vector symbolic architecture (VSA) started to gain attention within these methods due to the unique capabilities for representing variable-length sequences using single high-dimensional vectors. But the effect of different sequence parameters for the visual place recognition task is yet to be explored. In this work, we explore the parametrization of sequence encoding with VSA in the SeqNet variant of sequence-based visual place recognition and introduce a new hierarchical VPR method, which utilizes the proposed parametrization. We show that with our parametrization the VSA realization of sequence-based visual place recognition achieves on par results to conventional algorithms, while featuring the capability of being implemented on novel neuromorphic hardware for efficient execution.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"5 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition\",\"authors\":\"Thimal Kempitiya, Daswin de Silva, Sachin Kahawala, D. Haputhanthri, D. Alahakoon, Evgeny Osipov\",\"doi\":\"10.1109/IJCNN55064.2022.9892397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequence-based methods for visual place recognition (VPR) have great importance due to their ability of additional information capture through the sequences compared to single image comparison. Vector symbolic architecture (VSA) started to gain attention within these methods due to the unique capabilities for representing variable-length sequences using single high-dimensional vectors. But the effect of different sequence parameters for the visual place recognition task is yet to be explored. In this work, we explore the parametrization of sequence encoding with VSA in the SeqNet variant of sequence-based visual place recognition and introduce a new hierarchical VPR method, which utilizes the proposed parametrization. We show that with our parametrization the VSA realization of sequence-based visual place recognition achieves on par results to conventional algorithms, while featuring the capability of being implemented on novel neuromorphic hardware for efficient execution.\",\"PeriodicalId\":106974,\"journal\":{\"name\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"5 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN55064.2022.9892397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition
Sequence-based methods for visual place recognition (VPR) have great importance due to their ability of additional information capture through the sequences compared to single image comparison. Vector symbolic architecture (VSA) started to gain attention within these methods due to the unique capabilities for representing variable-length sequences using single high-dimensional vectors. But the effect of different sequence parameters for the visual place recognition task is yet to be explored. In this work, we explore the parametrization of sequence encoding with VSA in the SeqNet variant of sequence-based visual place recognition and introduce a new hierarchical VPR method, which utilizes the proposed parametrization. We show that with our parametrization the VSA realization of sequence-based visual place recognition achieves on par results to conventional algorithms, while featuring the capability of being implemented on novel neuromorphic hardware for efficient execution.