签名可交换性原则

Q1 Mathematics
Tahel Ronel , Alena Vencovská
{"title":"签名可交换性原则","authors":"Tahel Ronel ,&nbsp;Alena Vencovská","doi":"10.1016/j.jal.2015.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the notion of a <em>signature</em> in Polyadic Inductive Logic and study the probability functions satisfying the <em>Principle of Signature Exchangeability</em>. We prove a representation theorem for such functions on binary languages and show that they satisfy a binary version of the Principle of Instantial Relevance. We discuss polyadic versions of the Principle of Instantial Relevance and Johnson's Sufficientness Postulate.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"15 ","pages":"Pages 16-45"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2015.11.002","citationCount":"4","resultStr":"{\"title\":\"The principle of signature exchangeability\",\"authors\":\"Tahel Ronel ,&nbsp;Alena Vencovská\",\"doi\":\"10.1016/j.jal.2015.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the notion of a <em>signature</em> in Polyadic Inductive Logic and study the probability functions satisfying the <em>Principle of Signature Exchangeability</em>. We prove a representation theorem for such functions on binary languages and show that they satisfy a binary version of the Principle of Instantial Relevance. We discuss polyadic versions of the Principle of Instantial Relevance and Johnson's Sufficientness Postulate.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"15 \",\"pages\":\"Pages 16-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2015.11.002\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157086831500124X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157086831500124X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

研究了多进归纳逻辑中签名的概念,并研究了满足签名可交换性原则的概率函数。我们证明了这种函数在二进制语言上的表示定理,并证明了它们满足瞬时关联原理的二进制版本。我们讨论了即时关联原理和约翰逊充分性公设的多元版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The principle of signature exchangeability

We investigate the notion of a signature in Polyadic Inductive Logic and study the probability functions satisfying the Principle of Signature Exchangeability. We prove a representation theorem for such functions on binary languages and show that they satisfy a binary version of the Principle of Instantial Relevance. We discuss polyadic versions of the Principle of Instantial Relevance and Johnson's Sufficientness Postulate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信