基于迁移DRL的动态环境下基于优先级的认知MFR任务调度

Sunila Akbar, R. Adve, Z. Ding, P. Moo
{"title":"基于迁移DRL的动态环境下基于优先级的认知MFR任务调度","authors":"Sunila Akbar, R. Adve, Z. Ding, P. Moo","doi":"10.1109/RadarConf2351548.2023.10149670","DOIUrl":null,"url":null,"abstract":"A radar resource management module in a cognitive multifunction radar manages the resources by first prioritizing and then scheduling the tasks. Apart from scheduling the tasks, the task scheduler of a cognitive radar requires the scheduling to be adaptable to the changing environment. We formulate a gen-eral model for the distributions of task parameters, specifically, task priorities and delay tolerance, to ensure priority-based task scheduling. We develop the use of transfer learning (TL) within a deep reinforcement learning (DRL) framework to address the challenge of adaptability to a varying environment. Our approach builds on using a Monte Carlo Tree Search (MCTS) aided by a deep neural network (DNN). We show that TL allows accelerated training by transferring the policy learned by training the D NN-based MCTS on initial parameter distribution (environment) to the policy required for a new environment. Our results show that the high priority tasks are least delayed and dropped with the new formulation, whereas TL ensures the respective adaptation to the dynamic environment.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"3 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Priority-based Task Scheduling in Dynamic Environments for Cognitive MFR via Transfer DRL\",\"authors\":\"Sunila Akbar, R. Adve, Z. Ding, P. Moo\",\"doi\":\"10.1109/RadarConf2351548.2023.10149670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A radar resource management module in a cognitive multifunction radar manages the resources by first prioritizing and then scheduling the tasks. Apart from scheduling the tasks, the task scheduler of a cognitive radar requires the scheduling to be adaptable to the changing environment. We formulate a gen-eral model for the distributions of task parameters, specifically, task priorities and delay tolerance, to ensure priority-based task scheduling. We develop the use of transfer learning (TL) within a deep reinforcement learning (DRL) framework to address the challenge of adaptability to a varying environment. Our approach builds on using a Monte Carlo Tree Search (MCTS) aided by a deep neural network (DNN). We show that TL allows accelerated training by transferring the policy learned by training the D NN-based MCTS on initial parameter distribution (environment) to the policy required for a new environment. Our results show that the high priority tasks are least delayed and dropped with the new formulation, whereas TL ensures the respective adaptation to the dynamic environment.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"3 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

认知多功能雷达中的雷达资源管理模块首先对任务进行优先级排序,然后对任务进行调度。除了对任务进行调度外,认知雷达的任务调度程序还要求调度能够适应不断变化的环境。为了保证基于优先级的任务调度,我们建立了任务参数分布的通用模型,特别是任务优先级和延迟容限。我们在深度强化学习(DRL)框架中开发了迁移学习(TL)的使用,以解决对不同环境的适应性挑战。我们的方法建立在使用蒙特卡罗树搜索(MCTS)的基础上,辅以深度神经网络(DNN)。我们表明,TL可以通过将在初始参数分布(环境)上训练基于D神经网络的MCTS学到的策略转移到新环境所需的策略中来加速训练。我们的研究结果表明,高优先级的任务在新公式中延迟和删除最少,而TL保证了各自对动态环境的适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Priority-based Task Scheduling in Dynamic Environments for Cognitive MFR via Transfer DRL
A radar resource management module in a cognitive multifunction radar manages the resources by first prioritizing and then scheduling the tasks. Apart from scheduling the tasks, the task scheduler of a cognitive radar requires the scheduling to be adaptable to the changing environment. We formulate a gen-eral model for the distributions of task parameters, specifically, task priorities and delay tolerance, to ensure priority-based task scheduling. We develop the use of transfer learning (TL) within a deep reinforcement learning (DRL) framework to address the challenge of adaptability to a varying environment. Our approach builds on using a Monte Carlo Tree Search (MCTS) aided by a deep neural network (DNN). We show that TL allows accelerated training by transferring the policy learned by training the D NN-based MCTS on initial parameter distribution (environment) to the policy required for a new environment. Our results show that the high priority tasks are least delayed and dropped with the new formulation, whereas TL ensures the respective adaptation to the dynamic environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信