贝叶斯信念网络的映射与并行实现

N. Saxena, Sudeep Sarkar, N. Ranganathan
{"title":"贝叶斯信念网络的映射与并行实现","authors":"N. Saxena, Sudeep Sarkar, N. Ranganathan","doi":"10.1109/SPDP.1996.570391","DOIUrl":null,"url":null,"abstract":"Presents an efficient technique for mapping arbitrarily large Bayesian belief networks on hypercubes with deadlock-free implementation. We show that the speedup does not vary with the number of nodes in the Bayesian network and is limited by the height of the Peot-Shachter tree which is obtained by hanging the Bayesian polytree by a pivot node. We also found that the overhead in implementing Bayesian networks on parallel machines like hypercubes can be large because of the communication intensive nature of the network.","PeriodicalId":360478,"journal":{"name":"Proceedings of SPDP '96: 8th IEEE Symposium on Parallel and Distributed Processing","volume":"33 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mapping and parallel implementation of Bayesian belief networks\",\"authors\":\"N. Saxena, Sudeep Sarkar, N. Ranganathan\",\"doi\":\"10.1109/SPDP.1996.570391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents an efficient technique for mapping arbitrarily large Bayesian belief networks on hypercubes with deadlock-free implementation. We show that the speedup does not vary with the number of nodes in the Bayesian network and is limited by the height of the Peot-Shachter tree which is obtained by hanging the Bayesian polytree by a pivot node. We also found that the overhead in implementing Bayesian networks on parallel machines like hypercubes can be large because of the communication intensive nature of the network.\",\"PeriodicalId\":360478,\"journal\":{\"name\":\"Proceedings of SPDP '96: 8th IEEE Symposium on Parallel and Distributed Processing\",\"volume\":\"33 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPDP '96: 8th IEEE Symposium on Parallel and Distributed Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPDP.1996.570391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPDP '96: 8th IEEE Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPDP.1996.570391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种在超立方体上映射任意大贝叶斯信念网络的无死锁实现方法。我们证明了加速不随贝叶斯网络中节点的数量而变化,并且受poet - shachter树的高度的限制,该树是通过一个主节点挂起贝叶斯多树而获得的。我们还发现,在像超立方体这样的并行机器上实现贝叶斯网络的开销可能很大,因为网络的通信密集型性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping and parallel implementation of Bayesian belief networks
Presents an efficient technique for mapping arbitrarily large Bayesian belief networks on hypercubes with deadlock-free implementation. We show that the speedup does not vary with the number of nodes in the Bayesian network and is limited by the height of the Peot-Shachter tree which is obtained by hanging the Bayesian polytree by a pivot node. We also found that the overhead in implementing Bayesian networks on parallel machines like hypercubes can be large because of the communication intensive nature of the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信