基于FPGA的低复杂度热图像背景减去技术

Muhammad Imran, M. O’nils, H. Munir, Benny Thörnberg
{"title":"基于FPGA的低复杂度热图像背景减去技术","authors":"Muhammad Imran, M. O’nils, H. Munir, Benny Thörnberg","doi":"10.1145/2789116.2789121","DOIUrl":null,"url":null,"abstract":"Embedded smart camera systems are gaining popularity for a number of real world surveillance applications. However, there are still challenges, i.e. variation in illumination, shadows, occlusion, and weather conditions while employing the vision algorithms in outdoor environments. For safety-critical surveillance applications, the visual sensors can be complemented with beyond-visual-range sensors. This in turn requires analysis, development and modification of existing imaging techniques. In this work, a low complexity background modelling and subtraction technique has been proposed for thermal imagery. The proposed technique has been implemented on Field Programmable Gate Arrays (FPGAs) after in-depth analysis of different sets of images, characterizing poor signal-to-noise ratio challenges, e.g. motion of high frequency background objects, temperature variation and camera jitter etc. The proposed technique dynamically updates the background on pixel level and requires a single frame storage as opposed to existing techniques. The comparison of this approach with two other approaches show that this approach performs better in different environmental conditions. The proposed technique has been modelled in Register Transfer Logic (RTL) and implementation on the latest FPGAs shows that the design requires less than 1 percent logics, 47 percent block RAMs, and consumes 91 mW power consumption on Artix-7 100T FPGA.","PeriodicalId":113163,"journal":{"name":"Proceedings of the 9th International Conference on Distributed Smart Cameras","volume":"127 40","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low complexity FPGA based background subtraction technique for thermal imagery\",\"authors\":\"Muhammad Imran, M. O’nils, H. Munir, Benny Thörnberg\",\"doi\":\"10.1145/2789116.2789121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded smart camera systems are gaining popularity for a number of real world surveillance applications. However, there are still challenges, i.e. variation in illumination, shadows, occlusion, and weather conditions while employing the vision algorithms in outdoor environments. For safety-critical surveillance applications, the visual sensors can be complemented with beyond-visual-range sensors. This in turn requires analysis, development and modification of existing imaging techniques. In this work, a low complexity background modelling and subtraction technique has been proposed for thermal imagery. The proposed technique has been implemented on Field Programmable Gate Arrays (FPGAs) after in-depth analysis of different sets of images, characterizing poor signal-to-noise ratio challenges, e.g. motion of high frequency background objects, temperature variation and camera jitter etc. The proposed technique dynamically updates the background on pixel level and requires a single frame storage as opposed to existing techniques. The comparison of this approach with two other approaches show that this approach performs better in different environmental conditions. The proposed technique has been modelled in Register Transfer Logic (RTL) and implementation on the latest FPGAs shows that the design requires less than 1 percent logics, 47 percent block RAMs, and consumes 91 mW power consumption on Artix-7 100T FPGA.\",\"PeriodicalId\":113163,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Distributed Smart Cameras\",\"volume\":\"127 40\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Distributed Smart Cameras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2789116.2789121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789116.2789121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

嵌入式智能摄像头系统在许多现实世界的监控应用中越来越受欢迎。然而,在室外环境中使用视觉算法仍然存在挑战,即光照、阴影、遮挡和天气条件的变化。对于安全关键监视应用,视觉传感器可以与超视距传感器相辅相成。这反过来又需要分析、发展和修改现有的成像技术。在这项工作中,提出了一种低复杂度的热图像背景建模和减法技术。该技术已在现场可编程门阵列(fpga)上实现,深入分析了不同的图像集,表征了低频背景物体的运动,温度变化和相机抖动等低信噪比挑战。与现有技术相比,该技术在像素级上动态更新背景,并且需要单帧存储。与其他两种方法的比较表明,该方法在不同的环境条件下具有更好的性能。所提出的技术已经在寄存器传输逻辑(RTL)中建模,并且在最新FPGA上的实现表明,该设计需要不到1%的逻辑,47%的块ram,并且在Artix-7 100T FPGA上消耗91 mW的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low complexity FPGA based background subtraction technique for thermal imagery
Embedded smart camera systems are gaining popularity for a number of real world surveillance applications. However, there are still challenges, i.e. variation in illumination, shadows, occlusion, and weather conditions while employing the vision algorithms in outdoor environments. For safety-critical surveillance applications, the visual sensors can be complemented with beyond-visual-range sensors. This in turn requires analysis, development and modification of existing imaging techniques. In this work, a low complexity background modelling and subtraction technique has been proposed for thermal imagery. The proposed technique has been implemented on Field Programmable Gate Arrays (FPGAs) after in-depth analysis of different sets of images, characterizing poor signal-to-noise ratio challenges, e.g. motion of high frequency background objects, temperature variation and camera jitter etc. The proposed technique dynamically updates the background on pixel level and requires a single frame storage as opposed to existing techniques. The comparison of this approach with two other approaches show that this approach performs better in different environmental conditions. The proposed technique has been modelled in Register Transfer Logic (RTL) and implementation on the latest FPGAs shows that the design requires less than 1 percent logics, 47 percent block RAMs, and consumes 91 mW power consumption on Artix-7 100T FPGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信