基于导入故障信息的无故障数据评估方法研究

Y. Qian, Chao Jiang
{"title":"基于导入故障信息的无故障数据评估方法研究","authors":"Y. Qian, Chao Jiang","doi":"10.1109/QR2MSE46217.2019.9021111","DOIUrl":null,"url":null,"abstract":"For the case of no-failure data under the weibull distribution, when the prior distribution is Beta distribution, the ranges of super-parameters a and b are determined by the characteristics of probability density function. After introducing failure information, the method of the multi-level bayes estimation is modified. The robustness and feasibility of the method are verified by comparing the error of failure probability and the reliability calculated.","PeriodicalId":233855,"journal":{"name":"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)","volume":"11 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on No-Failure Data Evaluation Method Based on Imported Failure Information\",\"authors\":\"Y. Qian, Chao Jiang\",\"doi\":\"10.1109/QR2MSE46217.2019.9021111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the case of no-failure data under the weibull distribution, when the prior distribution is Beta distribution, the ranges of super-parameters a and b are determined by the characteristics of probability density function. After introducing failure information, the method of the multi-level bayes estimation is modified. The robustness and feasibility of the method are verified by comparing the error of failure probability and the reliability calculated.\",\"PeriodicalId\":233855,\"journal\":{\"name\":\"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)\",\"volume\":\"11 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QR2MSE46217.2019.9021111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QR2MSE46217.2019.9021111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于weibull分布下的无失效数据,当先验分布为Beta分布时,超参数a和b的取值范围由概率密度函数的特征决定。在引入故障信息后,对多级贝叶斯估计方法进行了改进。通过对失效概率误差和可靠性计算结果的比较,验证了该方法的鲁棒性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on No-Failure Data Evaluation Method Based on Imported Failure Information
For the case of no-failure data under the weibull distribution, when the prior distribution is Beta distribution, the ranges of super-parameters a and b are determined by the characteristics of probability density function. After introducing failure information, the method of the multi-level bayes estimation is modified. The robustness and feasibility of the method are verified by comparing the error of failure probability and the reliability calculated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信