基于文本挖掘的位置社交网络信息过滤混合模型

Rodrigo Miranda Feitosa, S. Labidi, André Luis Silva dos Santos
{"title":"基于文本挖掘的位置社交网络信息过滤混合模型","authors":"Rodrigo Miranda Feitosa, S. Labidi, André Luis Silva dos Santos","doi":"10.1109/HIS.2014.7086206","DOIUrl":null,"url":null,"abstract":"The research aims to create an application that uses techniques from Machine Learning to extract and collate data geolocated - collected a Social Network, aiming to promote the Social Recommendation users. Existing research in the field of social recommendation deficiencies remain regarding the effectiveness of the filtered data. This paper presents a study and implementation using Text Mining techniques as a proposal for resolution of problems found in social recommendation and more effective results.","PeriodicalId":161103,"journal":{"name":"2014 14th International Conference on Hybrid Intelligent Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid model for information filtering in location based social networks using text mining\",\"authors\":\"Rodrigo Miranda Feitosa, S. Labidi, André Luis Silva dos Santos\",\"doi\":\"10.1109/HIS.2014.7086206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research aims to create an application that uses techniques from Machine Learning to extract and collate data geolocated - collected a Social Network, aiming to promote the Social Recommendation users. Existing research in the field of social recommendation deficiencies remain regarding the effectiveness of the filtered data. This paper presents a study and implementation using Text Mining techniques as a proposal for resolution of problems found in social recommendation and more effective results.\",\"PeriodicalId\":161103,\"journal\":{\"name\":\"2014 14th International Conference on Hybrid Intelligent Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2014.7086206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2014.7086206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

该研究旨在创建一个应用程序,该应用程序使用机器学习技术来提取和整理社交网络中收集的地理位置数据,旨在促进社交推荐用户。社会推荐领域的现有研究在过滤数据的有效性方面仍然存在不足。本文提出了一种使用文本挖掘技术来解决社交推荐中发现的问题并获得更有效结果的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid model for information filtering in location based social networks using text mining
The research aims to create an application that uses techniques from Machine Learning to extract and collate data geolocated - collected a Social Network, aiming to promote the Social Recommendation users. Existing research in the field of social recommendation deficiencies remain regarding the effectiveness of the filtered data. This paper presents a study and implementation using Text Mining techniques as a proposal for resolution of problems found in social recommendation and more effective results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信