Guannan Li, Jun Liu, Xue Wang, Hongli Xu, Jun-hong Cui
{"title":"群auv声通信网络模拟器","authors":"Guannan Li, Jun Liu, Xue Wang, Hongli Xu, Jun-hong Cui","doi":"10.1145/2999504.3001075","DOIUrl":null,"url":null,"abstract":"This paper presents a simulator for swarm operations designed to verify algorithms for a swarm of autonomous underwater robots (AUVs), specifically for constructing an underwater communication network with AUVs carrying acoustic communication devices. This simulator consists of three nodes: a virtual vehicle node (VV), a virtual environment node (VE), and a visual showing node (VS). The modular design treats AUV models as a combination of virtual equipment. An expert acoustic communication simulator is embedded in this simulator, to simulate scenarios with dynamic acoustic communication nodes. The several simulations we have performed demonstrate that this simulator is easy to use and can be further improved.","PeriodicalId":378624,"journal":{"name":"Proceedings of the 11th International Conference on Underwater Networks & Systems","volume":"28 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulator for swarm AUVs acoustic communication networking\",\"authors\":\"Guannan Li, Jun Liu, Xue Wang, Hongli Xu, Jun-hong Cui\",\"doi\":\"10.1145/2999504.3001075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a simulator for swarm operations designed to verify algorithms for a swarm of autonomous underwater robots (AUVs), specifically for constructing an underwater communication network with AUVs carrying acoustic communication devices. This simulator consists of three nodes: a virtual vehicle node (VV), a virtual environment node (VE), and a visual showing node (VS). The modular design treats AUV models as a combination of virtual equipment. An expert acoustic communication simulator is embedded in this simulator, to simulate scenarios with dynamic acoustic communication nodes. The several simulations we have performed demonstrate that this simulator is easy to use and can be further improved.\",\"PeriodicalId\":378624,\"journal\":{\"name\":\"Proceedings of the 11th International Conference on Underwater Networks & Systems\",\"volume\":\"28 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th International Conference on Underwater Networks & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2999504.3001075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Underwater Networks & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2999504.3001075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simulator for swarm AUVs acoustic communication networking
This paper presents a simulator for swarm operations designed to verify algorithms for a swarm of autonomous underwater robots (AUVs), specifically for constructing an underwater communication network with AUVs carrying acoustic communication devices. This simulator consists of three nodes: a virtual vehicle node (VV), a virtual environment node (VE), and a visual showing node (VS). The modular design treats AUV models as a combination of virtual equipment. An expert acoustic communication simulator is embedded in this simulator, to simulate scenarios with dynamic acoustic communication nodes. The several simulations we have performed demonstrate that this simulator is easy to use and can be further improved.