利用递归神经网络设计环境对虾预测参数算法

P. Nguyen, Q. Duong, Minh Van Luong, Hoang Duc Chu
{"title":"利用递归神经网络设计环境对虾预测参数算法","authors":"P. Nguyen, Q. Duong, Minh Van Luong, Hoang Duc Chu","doi":"10.31130/ICT-UD.2020.104","DOIUrl":null,"url":null,"abstract":"With the strong development of science and technology, the study of technologies related to environmental forecasting is important. In recent years, the application of smart technology in aquaculture has been widely applied. Based on the requirement, we focus on predicting the environmental parameters applied in shrimp farming, especially white shrimp, one of the seafood grown in our country. In the paper, we exploit a small branch of identification problem. This paper proposes an algorithmic construction method to predict changes in shrimp farm environmental parameters and simulate the next parameters based on current parameters. The goal of the paper is to reduce the parameter of Recurrent Neural Network (RNN) while ensuring data accuracy. Experimental results show that the proposal algorithm improves up to 85 percent when selecting suitable learning factor of neural networks.","PeriodicalId":114451,"journal":{"name":"Journal of Science and Technology: Issue on Information and Communications Technology","volume":"40 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Forecasting Parameter Algorithm of Environmental Shrimp Using Recurrent Neural Network\",\"authors\":\"P. Nguyen, Q. Duong, Minh Van Luong, Hoang Duc Chu\",\"doi\":\"10.31130/ICT-UD.2020.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the strong development of science and technology, the study of technologies related to environmental forecasting is important. In recent years, the application of smart technology in aquaculture has been widely applied. Based on the requirement, we focus on predicting the environmental parameters applied in shrimp farming, especially white shrimp, one of the seafood grown in our country. In the paper, we exploit a small branch of identification problem. This paper proposes an algorithmic construction method to predict changes in shrimp farm environmental parameters and simulate the next parameters based on current parameters. The goal of the paper is to reduce the parameter of Recurrent Neural Network (RNN) while ensuring data accuracy. Experimental results show that the proposal algorithm improves up to 85 percent when selecting suitable learning factor of neural networks.\",\"PeriodicalId\":114451,\"journal\":{\"name\":\"Journal of Science and Technology: Issue on Information and Communications Technology\",\"volume\":\"40 14\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Technology: Issue on Information and Communications Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31130/ICT-UD.2020.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology: Issue on Information and Communications Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31130/ICT-UD.2020.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着科学技术的迅猛发展,环境预报相关技术的研究显得尤为重要。近年来,智能技术在水产养殖中的应用得到了广泛的应用。根据这一要求,重点对虾类养殖的环境参数进行了预测,特别是我国养殖的海产品之一白对虾。在本文中,我们开发了识别问题的一个小分支。本文提出了一种预测虾场环境参数变化的算法构建方法,并基于当前参数对下一步参数进行模拟。本文的目标是在保证数据准确性的同时减少递归神经网络(RNN)的参数。实验结果表明,在选择合适的神经网络学习因子时,提出的算法提高了85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Forecasting Parameter Algorithm of Environmental Shrimp Using Recurrent Neural Network
With the strong development of science and technology, the study of technologies related to environmental forecasting is important. In recent years, the application of smart technology in aquaculture has been widely applied. Based on the requirement, we focus on predicting the environmental parameters applied in shrimp farming, especially white shrimp, one of the seafood grown in our country. In the paper, we exploit a small branch of identification problem. This paper proposes an algorithmic construction method to predict changes in shrimp farm environmental parameters and simulate the next parameters based on current parameters. The goal of the paper is to reduce the parameter of Recurrent Neural Network (RNN) while ensuring data accuracy. Experimental results show that the proposal algorithm improves up to 85 percent when selecting suitable learning factor of neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信