机器人步态训练装置中平衡相关自由度对行走影响的评估

J. Veneman, E. V. van Asseldonk, R. Ekkelenkamp, F. V. D. van der Helm, H. van der Kooij
{"title":"机器人步态训练装置中平衡相关自由度对行走影响的评估","authors":"J. Veneman, E. V. van Asseldonk, R. Ekkelenkamp, F. V. D. van der Helm, H. van der Kooij","doi":"10.1109/ICORR.2007.4428526","DOIUrl":null,"url":null,"abstract":"In the design of exoskeletons for gait rehabilitation, the choice of degrees of freedom (DoFs) is one of the main issues. The goal of this research is to evaluate the effect of availability of additional DoFs related to balance-keeping on the normality of walking. These additional DoFs are the horizontal translations of the pelvis and the frontal rotation of the hip. Measurements on the gait of ten healthy subjects showed that kinematics and EMG differ only slightly when these DoFs are blocked (and only the sagittal joint rotations are available), in the impedance-controlled LOPES exoskeleton. This shows that omitting the additional DoFs allows walking with close-to-normal motor control, and also that effects of waking in this robot per se overshadow the additional effects of the mentioned DoFs. All subjects however reported a more difficult and uncomfortable walking when the horizontal pelvis motions were blocked. An additional motivation for keeping the DoFs despite these results is that they allow implementation of balance training.","PeriodicalId":197465,"journal":{"name":"2007 IEEE 10th International Conference on Rehabilitation Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Evaluation of the effect on walking of balance-related degrees of freedom in a robotic gait training device\",\"authors\":\"J. Veneman, E. V. van Asseldonk, R. Ekkelenkamp, F. V. D. van der Helm, H. van der Kooij\",\"doi\":\"10.1109/ICORR.2007.4428526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the design of exoskeletons for gait rehabilitation, the choice of degrees of freedom (DoFs) is one of the main issues. The goal of this research is to evaluate the effect of availability of additional DoFs related to balance-keeping on the normality of walking. These additional DoFs are the horizontal translations of the pelvis and the frontal rotation of the hip. Measurements on the gait of ten healthy subjects showed that kinematics and EMG differ only slightly when these DoFs are blocked (and only the sagittal joint rotations are available), in the impedance-controlled LOPES exoskeleton. This shows that omitting the additional DoFs allows walking with close-to-normal motor control, and also that effects of waking in this robot per se overshadow the additional effects of the mentioned DoFs. All subjects however reported a more difficult and uncomfortable walking when the horizontal pelvis motions were blocked. An additional motivation for keeping the DoFs despite these results is that they allow implementation of balance training.\",\"PeriodicalId\":197465,\"journal\":{\"name\":\"2007 IEEE 10th International Conference on Rehabilitation Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 10th International Conference on Rehabilitation Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2007.4428526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 10th International Conference on Rehabilitation Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2007.4428526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在步态康复外骨骼的设计中,自由度的选择是主要问题之一。本研究的目的是评估与保持平衡相关的额外自由度的可用性对正常行走的影响。这些额外的自由度是骨盆的水平平移和髋关节的正面旋转。对10名健康受试者的步态测量表明,在阻抗控制的LOPES外骨骼中,当这些自由度被阻断(并且只有矢状关节旋转可用)时,运动学和肌电图仅略有不同。这表明,忽略额外的自由度可以使行走接近正常的运动控制,并且在这个机器人中唤醒的影响本身掩盖了上述自由度的额外影响。然而,当骨盆水平运动受到阻碍时,所有受试者都报告行走更加困难和不舒服。尽管有这些结果,保持dof的另一个动机是它们允许实施平衡训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the effect on walking of balance-related degrees of freedom in a robotic gait training device
In the design of exoskeletons for gait rehabilitation, the choice of degrees of freedom (DoFs) is one of the main issues. The goal of this research is to evaluate the effect of availability of additional DoFs related to balance-keeping on the normality of walking. These additional DoFs are the horizontal translations of the pelvis and the frontal rotation of the hip. Measurements on the gait of ten healthy subjects showed that kinematics and EMG differ only slightly when these DoFs are blocked (and only the sagittal joint rotations are available), in the impedance-controlled LOPES exoskeleton. This shows that omitting the additional DoFs allows walking with close-to-normal motor control, and also that effects of waking in this robot per se overshadow the additional effects of the mentioned DoFs. All subjects however reported a more difficult and uncomfortable walking when the horizontal pelvis motions were blocked. An additional motivation for keeping the DoFs despite these results is that they allow implementation of balance training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信