面向鲁棒洋葱状结构的智能拓扑优化策略

Qianzhen Sun, Tie Qiu, He Guo
{"title":"面向鲁棒洋葱状结构的智能拓扑优化策略","authors":"Qianzhen Sun, Tie Qiu, He Guo","doi":"10.1109/SmartIoT49966.2020.00063","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) is susceptible to threats from natural disasters and human damage, thereby affecting the communication efficiency and security of the network. The scale-free IoT topology can resist the impact of random attacks, but is particularly vulnerable to malicious attacks against critical nodes. To tackle this problem, this paper proposes an intelligent topology optimization strategy combined with convolutional neural network, which evolves the initial IoT topology into a robust onion-like structure against malicious attacks. In addition, we introduce a method to convert topology information into a sequence model suitable for feature extraction. The experimental results show that this strategy can efficiently optimize the network topology into an onion-like structure.","PeriodicalId":399187,"journal":{"name":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"37 42","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Intelligent Topology Optimization Strategy Toward the Robust Onion-like Structure\",\"authors\":\"Qianzhen Sun, Tie Qiu, He Guo\",\"doi\":\"10.1109/SmartIoT49966.2020.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) is susceptible to threats from natural disasters and human damage, thereby affecting the communication efficiency and security of the network. The scale-free IoT topology can resist the impact of random attacks, but is particularly vulnerable to malicious attacks against critical nodes. To tackle this problem, this paper proposes an intelligent topology optimization strategy combined with convolutional neural network, which evolves the initial IoT topology into a robust onion-like structure against malicious attacks. In addition, we introduce a method to convert topology information into a sequence model suitable for feature extraction. The experimental results show that this strategy can efficiently optimize the network topology into an onion-like structure.\",\"PeriodicalId\":399187,\"journal\":{\"name\":\"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"37 42\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT49966.2020.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT49966.2020.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

物联网容易受到自然灾害和人为破坏的威胁,从而影响网络的通信效率和安全性。无标度物联网拓扑可以抵御随机攻击的影响,但特别容易受到针对关键节点的恶意攻击。为了解决这一问题,本文提出了一种结合卷积神经网络的智能拓扑优化策略,将初始物联网拓扑进化为抗恶意攻击的健壮洋葱状结构。此外,我们还介绍了一种将拓扑信息转换成适合于特征提取的序列模型的方法。实验结果表明,该策略可以有效地将网络拓扑优化为洋葱状结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Intelligent Topology Optimization Strategy Toward the Robust Onion-like Structure
The Internet of Things (IoT) is susceptible to threats from natural disasters and human damage, thereby affecting the communication efficiency and security of the network. The scale-free IoT topology can resist the impact of random attacks, but is particularly vulnerable to malicious attacks against critical nodes. To tackle this problem, this paper proposes an intelligent topology optimization strategy combined with convolutional neural network, which evolves the initial IoT topology into a robust onion-like structure against malicious attacks. In addition, we introduce a method to convert topology information into a sequence model suitable for feature extraction. The experimental results show that this strategy can efficiently optimize the network topology into an onion-like structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信