基于卷积神经网络的三维DRAM-RRAM混合存储器的动态热预测工作负荷运动

Shu-Yen Lin, Guang-Fong Liu
{"title":"基于卷积神经网络的三维DRAM-RRAM混合存储器的动态热预测工作负荷运动","authors":"Shu-Yen Lin, Guang-Fong Liu","doi":"10.1109/ICCE-Taiwan55306.2022.9869204","DOIUrl":null,"url":null,"abstract":"Nowadays, Convolutional Neural Network (CNN) is widely used in many applications. Multi -layered convolutional neural networks need lots of memory capacity and bandwidth. A large number of the CNN parameters cause long latency for the memory accesses. To solve this problem, the 3D stacked DRAM-RRAM hybrid memory is discussed. However, the 3D stacked DRAM-RRAM hybrid memory may result in serious thermal problem for the thermal limitation of the DRAM and RRAM chips. In this work, we propose the dynamic thermal-predicted workload movement (DTPWM) to solve this problem. If the overheated banks of the DRAM and RRAM chips are predicted, DTPWM can move the workloads to other non-overheated memory banks. In our experiment, the latencies of the 3D stacked DRAM-RRAM hybrid memory is reduced by 27.7% under the thermal limitation.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"50 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Thermal-Predicted Workload Movement with Three-Dimensional DRAM-RRAM Hybrid Memories for Convolutional Neural Network Applications\",\"authors\":\"Shu-Yen Lin, Guang-Fong Liu\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, Convolutional Neural Network (CNN) is widely used in many applications. Multi -layered convolutional neural networks need lots of memory capacity and bandwidth. A large number of the CNN parameters cause long latency for the memory accesses. To solve this problem, the 3D stacked DRAM-RRAM hybrid memory is discussed. However, the 3D stacked DRAM-RRAM hybrid memory may result in serious thermal problem for the thermal limitation of the DRAM and RRAM chips. In this work, we propose the dynamic thermal-predicted workload movement (DTPWM) to solve this problem. If the overheated banks of the DRAM and RRAM chips are predicted, DTPWM can move the workloads to other non-overheated memory banks. In our experiment, the latencies of the 3D stacked DRAM-RRAM hybrid memory is reduced by 27.7% under the thermal limitation.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"50 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,卷积神经网络(CNN)在许多应用中得到了广泛的应用。多层卷积神经网络需要大量的存储容量和带宽。大量的CNN参数会导致对内存的访问延迟较长。为了解决这一问题,讨论了3D堆叠式DRAM-RRAM混合存储器。然而,由于DRAM和RRAM芯片的热限制,3D堆叠式DRAM-RRAM混合存储器可能会导致严重的热问题。在这项工作中,我们提出了动态热预测工作负载移动(DTPWM)来解决这个问题。如果预测到DRAM和RRAM芯片的过热组,DTPWM可以将工作负载转移到其他不过热的内存组。在我们的实验中,在热限制下,3D堆叠DRAM-RRAM混合存储器的延迟降低了27.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Thermal-Predicted Workload Movement with Three-Dimensional DRAM-RRAM Hybrid Memories for Convolutional Neural Network Applications
Nowadays, Convolutional Neural Network (CNN) is widely used in many applications. Multi -layered convolutional neural networks need lots of memory capacity and bandwidth. A large number of the CNN parameters cause long latency for the memory accesses. To solve this problem, the 3D stacked DRAM-RRAM hybrid memory is discussed. However, the 3D stacked DRAM-RRAM hybrid memory may result in serious thermal problem for the thermal limitation of the DRAM and RRAM chips. In this work, we propose the dynamic thermal-predicted workload movement (DTPWM) to solve this problem. If the overheated banks of the DRAM and RRAM chips are predicted, DTPWM can move the workloads to other non-overheated memory banks. In our experiment, the latencies of the 3D stacked DRAM-RRAM hybrid memory is reduced by 27.7% under the thermal limitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信