用自组织图法测定铝土矿中活性二氧化硅和有效氧化铝

C. C. Carneiro, Dayana Niazabeth Del Valle Silva Yanez, C. Ulsen, S. Fraser, Juliana Livi Antoniassi, S. Paz, R. Angélica, H. Kahn
{"title":"用自组织图法测定铝土矿中活性二氧化硅和有效氧化铝","authors":"C. C. Carneiro, Dayana Niazabeth Del Valle Silva Yanez, C. Ulsen, S. Fraser, Juliana Livi Antoniassi, S. Paz, R. Angélica, H. Kahn","doi":"10.1109/WSOM.2017.8020008","DOIUrl":null,"url":null,"abstract":"Geochemical analyses can provide multiple analytical variables. Accordingly, the generation of large geochemical databases enables imputation studies or analytical estimates of missing values or complex measuring. The processing of bauxite is a key step in the production of aluminum, in which the determination of Reactive Silica (RxSiO<inf>2</inf>) and Available Alumina (AvAl<inf>2</inf>O<inf>3</inf>) are very relevant. The traditional analytical method for achieving RxSiO<inf>2</inf> has limitations associated with poor repeatability and reproducibility of results. Based on the values from the unsupervised Self-Organizing Maps technique, this study aims to develop, systematically, the imputation of missing grades of the geochemical composition of bauxite samples of a database from three trial projects, for the variables: total Al<inf>2</inf>O<inf>3</inf>; total SiO<inf>2</inf>; total Fe<inf>2</inf>O<inf>3</inf>; and total TiO<inf>2</inf>. Each project was submitted to partial exclusion of AvAl<inf>2</inf>O<inf>3</inf> and RxSiO<inf>2</inf> values, in proportion of 20%, 30%, 40% and 50%, to investigate the SOM technique as imputation method for RxSiO<inf>2</inf> and AvAl<inf>2</inf>O<inf>3</inf>. By comparing the imputed values from the SOM analysis with the original values, SOM technique demonstrated to be an imputation tool capable of obtaining analytical results with up to 50% of missing data. Specifically, the best results demonstrate that AvAl<inf>2</inf>O<inf>3</inf> can be obtained by imputation with a higher correlation than RxSiO<inf>2</inf>, based on the parameters and variables involved in the study. Similarity in the nature of samples and an increase in the number of embedded analytical variables are factors that provided better imputation results.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"50 15","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Imputation of reactive silica and available alumina in bauxites by self-organizing maps\",\"authors\":\"C. C. Carneiro, Dayana Niazabeth Del Valle Silva Yanez, C. Ulsen, S. Fraser, Juliana Livi Antoniassi, S. Paz, R. Angélica, H. Kahn\",\"doi\":\"10.1109/WSOM.2017.8020008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geochemical analyses can provide multiple analytical variables. Accordingly, the generation of large geochemical databases enables imputation studies or analytical estimates of missing values or complex measuring. The processing of bauxite is a key step in the production of aluminum, in which the determination of Reactive Silica (RxSiO<inf>2</inf>) and Available Alumina (AvAl<inf>2</inf>O<inf>3</inf>) are very relevant. The traditional analytical method for achieving RxSiO<inf>2</inf> has limitations associated with poor repeatability and reproducibility of results. Based on the values from the unsupervised Self-Organizing Maps technique, this study aims to develop, systematically, the imputation of missing grades of the geochemical composition of bauxite samples of a database from three trial projects, for the variables: total Al<inf>2</inf>O<inf>3</inf>; total SiO<inf>2</inf>; total Fe<inf>2</inf>O<inf>3</inf>; and total TiO<inf>2</inf>. Each project was submitted to partial exclusion of AvAl<inf>2</inf>O<inf>3</inf> and RxSiO<inf>2</inf> values, in proportion of 20%, 30%, 40% and 50%, to investigate the SOM technique as imputation method for RxSiO<inf>2</inf> and AvAl<inf>2</inf>O<inf>3</inf>. By comparing the imputed values from the SOM analysis with the original values, SOM technique demonstrated to be an imputation tool capable of obtaining analytical results with up to 50% of missing data. Specifically, the best results demonstrate that AvAl<inf>2</inf>O<inf>3</inf> can be obtained by imputation with a higher correlation than RxSiO<inf>2</inf>, based on the parameters and variables involved in the study. Similarity in the nature of samples and an increase in the number of embedded analytical variables are factors that provided better imputation results.\",\"PeriodicalId\":130086,\"journal\":{\"name\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"volume\":\"50 15\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSOM.2017.8020008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

地球化学分析可以提供多个分析变量。因此,大型地球化学数据库的产生使对缺失值或复杂测量的归算研究或分析估计成为可能。铝土矿的加工是铝生产的关键步骤,其中活性二氧化硅(RxSiO2)和有效氧化铝(AvAl2O3)的测定是非常重要的。获得RxSiO2的传统分析方法存在重复性差和结果重现性差的局限性。基于无监督自组织图(unsupervised Self-Organizing Maps)技术的值,本研究旨在系统地建立三个试验项目数据库中铝土矿样品地球化学成分缺失品位的归算方法,变量为:Al2O3总量;总二氧化硅;总Fe2O3;和总TiO2。每个项目按20%、30%、40%和50%的比例对AvAl2O3和RxSiO2值进行部分排除,研究SOM技术作为RxSiO2和AvAl2O3的imputation方法。通过将SOM分析的输入值与原始值进行比较,SOM技术证明是一种能够在缺失数据高达50%的情况下获得分析结果的输入工具。具体而言,最佳结果表明,基于研究中涉及的参数和变量,通过代入得到的AvAl2O3比RxSiO2具有更高的相关性。样品性质的相似性和嵌入分析变量数量的增加是提供更好的imputation结果的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imputation of reactive silica and available alumina in bauxites by self-organizing maps
Geochemical analyses can provide multiple analytical variables. Accordingly, the generation of large geochemical databases enables imputation studies or analytical estimates of missing values or complex measuring. The processing of bauxite is a key step in the production of aluminum, in which the determination of Reactive Silica (RxSiO2) and Available Alumina (AvAl2O3) are very relevant. The traditional analytical method for achieving RxSiO2 has limitations associated with poor repeatability and reproducibility of results. Based on the values from the unsupervised Self-Organizing Maps technique, this study aims to develop, systematically, the imputation of missing grades of the geochemical composition of bauxite samples of a database from three trial projects, for the variables: total Al2O3; total SiO2; total Fe2O3; and total TiO2. Each project was submitted to partial exclusion of AvAl2O3 and RxSiO2 values, in proportion of 20%, 30%, 40% and 50%, to investigate the SOM technique as imputation method for RxSiO2 and AvAl2O3. By comparing the imputed values from the SOM analysis with the original values, SOM technique demonstrated to be an imputation tool capable of obtaining analytical results with up to 50% of missing data. Specifically, the best results demonstrate that AvAl2O3 can be obtained by imputation with a higher correlation than RxSiO2, based on the parameters and variables involved in the study. Similarity in the nature of samples and an increase in the number of embedded analytical variables are factors that provided better imputation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信