预测地下水污染的优化机器学习模型

Hirak Mazumdar, M. P. Murphy, Shilpa Bhatkande, H. Emerson, D. Kaplan, Hardik A. Gohel
{"title":"预测地下水污染的优化机器学习模型","authors":"Hirak Mazumdar, M. P. Murphy, Shilpa Bhatkande, H. Emerson, D. Kaplan, Hardik A. Gohel","doi":"10.1109/MetroCon56047.2022.9971133","DOIUrl":null,"url":null,"abstract":"The use of physical models to predict groundwater contaminant movement remains technically challenging due to the complexity of the phenomena, the heterogeneity of key parameters in nature, and the presence of poorly defined interactive and feedback processes. New approaches to address these challenges are needed. In this study, we evaluate various Artificial Intelligence (AI)-based approaches to understand hexavalent chromium (Cr(VI)) plumes located on the U.S. Department of Energy’s (DOE) Hanford Site in Richland, WA. The groundwater monitoring dataset used in this study included data from the 100 Area along the Columbia River and included data collected between 2010 to 2019. This study investigates the most prominent contaminant, Cr(VI), with the Extreme Gradient Boosting (XGBoost) machine learning model. The XGBoost model was compared with an optimized version using an Empirical Bayes Search Cross-Validation technique for better prediction. The optimized XGBoost model yielded an R2 value of 0.99 on the training set and 0.85 on the testing set, whereas X G B Boost without optimization yielded a value of 0.83 on the training set and 0.73 on the testing set. This paper provides an overview of a computational method for groundwater contamination modeling that shows promise for improving current remediation efforts.","PeriodicalId":292881,"journal":{"name":"2022 IEEE MetroCon","volume":"41 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimized Machine Learning Model for Predicting Groundwater Contamination\",\"authors\":\"Hirak Mazumdar, M. P. Murphy, Shilpa Bhatkande, H. Emerson, D. Kaplan, Hardik A. Gohel\",\"doi\":\"10.1109/MetroCon56047.2022.9971133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of physical models to predict groundwater contaminant movement remains technically challenging due to the complexity of the phenomena, the heterogeneity of key parameters in nature, and the presence of poorly defined interactive and feedback processes. New approaches to address these challenges are needed. In this study, we evaluate various Artificial Intelligence (AI)-based approaches to understand hexavalent chromium (Cr(VI)) plumes located on the U.S. Department of Energy’s (DOE) Hanford Site in Richland, WA. The groundwater monitoring dataset used in this study included data from the 100 Area along the Columbia River and included data collected between 2010 to 2019. This study investigates the most prominent contaminant, Cr(VI), with the Extreme Gradient Boosting (XGBoost) machine learning model. The XGBoost model was compared with an optimized version using an Empirical Bayes Search Cross-Validation technique for better prediction. The optimized XGBoost model yielded an R2 value of 0.99 on the training set and 0.85 on the testing set, whereas X G B Boost without optimization yielded a value of 0.83 on the training set and 0.73 on the testing set. This paper provides an overview of a computational method for groundwater contamination modeling that shows promise for improving current remediation efforts.\",\"PeriodicalId\":292881,\"journal\":{\"name\":\"2022 IEEE MetroCon\",\"volume\":\"41 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE MetroCon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroCon56047.2022.9971133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MetroCon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroCon56047.2022.9971133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于现象的复杂性、自然界关键参数的异质性以及存在定义不清的交互和反馈过程,使用物理模型来预测地下水污染物的运动在技术上仍然具有挑战性。需要采取新的方法来应对这些挑战。在本研究中,我们评估了各种基于人工智能(AI)的方法,以了解位于美国能源部(DOE)位于华盛顿州里奇兰的汉福德站点的六价铬(Cr(VI))羽流。本研究中使用的地下水监测数据集包括来自哥伦比亚河沿岸100区的数据,包括2010年至2019年收集的数据。本研究使用极端梯度增强(XGBoost)机器学习模型研究了最突出的污染物Cr(VI)。使用经验贝叶斯搜索交叉验证技术将XGBoost模型与优化版本进行比较,以获得更好的预测效果。优化后的XGBoost模型在训练集上的R2值为0.99,在测试集上的R2值为0.85,而未经优化的XGB Boost在训练集上的R2值为0.83,在测试集上的R2值为0.73。本文概述了地下水污染建模的计算方法,该方法有望改善当前的修复工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Machine Learning Model for Predicting Groundwater Contamination
The use of physical models to predict groundwater contaminant movement remains technically challenging due to the complexity of the phenomena, the heterogeneity of key parameters in nature, and the presence of poorly defined interactive and feedback processes. New approaches to address these challenges are needed. In this study, we evaluate various Artificial Intelligence (AI)-based approaches to understand hexavalent chromium (Cr(VI)) plumes located on the U.S. Department of Energy’s (DOE) Hanford Site in Richland, WA. The groundwater monitoring dataset used in this study included data from the 100 Area along the Columbia River and included data collected between 2010 to 2019. This study investigates the most prominent contaminant, Cr(VI), with the Extreme Gradient Boosting (XGBoost) machine learning model. The XGBoost model was compared with an optimized version using an Empirical Bayes Search Cross-Validation technique for better prediction. The optimized XGBoost model yielded an R2 value of 0.99 on the training set and 0.85 on the testing set, whereas X G B Boost without optimization yielded a value of 0.83 on the training set and 0.73 on the testing set. This paper provides an overview of a computational method for groundwater contamination modeling that shows promise for improving current remediation efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信