{"title":"替代信任源:使用TLS减少DNSSEC签名验证操作","authors":"S. Donovan, N. Feamster","doi":"10.1145/2785956.2790001","DOIUrl":null,"url":null,"abstract":"DNSSEC has been in development for 20 years. It provides for provable security when retrieving domain names through the use of a public key infrastructure (PKI). Unfortunately, there is also significant overhead involved with DNSSEC: verifying certificate chains of signed DNS messages involves extra computation, queries to remote resolvers, additional transfers, and introduces added latency into the DNS query path. We pose the question: is it possible to achieve practical security without always verifying this certificate chain if we use a different, outside source of trust between resolvers? We believe we can. Namely, by using a long-lived, mutually authenticated TLS connection between pairs of DNS resolvers, we suggest that we can maintain near-equivalent levels of security with very little extra overhead compared to a non-DNSSEC enabled resolver. By using a reputation system or probabilistically verifying a portion of DNSSEC responses would allow for near-equivalent levels of security to be reached, even in the face of compromised resolvers.","PeriodicalId":268472,"journal":{"name":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","volume":"33 50","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Alternative Trust Sources: Reducing DNSSEC Signature Verification Operations with TLS\",\"authors\":\"S. Donovan, N. Feamster\",\"doi\":\"10.1145/2785956.2790001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNSSEC has been in development for 20 years. It provides for provable security when retrieving domain names through the use of a public key infrastructure (PKI). Unfortunately, there is also significant overhead involved with DNSSEC: verifying certificate chains of signed DNS messages involves extra computation, queries to remote resolvers, additional transfers, and introduces added latency into the DNS query path. We pose the question: is it possible to achieve practical security without always verifying this certificate chain if we use a different, outside source of trust between resolvers? We believe we can. Namely, by using a long-lived, mutually authenticated TLS connection between pairs of DNS resolvers, we suggest that we can maintain near-equivalent levels of security with very little extra overhead compared to a non-DNSSEC enabled resolver. By using a reputation system or probabilistically verifying a portion of DNSSEC responses would allow for near-equivalent levels of security to be reached, even in the face of compromised resolvers.\",\"PeriodicalId\":268472,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"volume\":\"33 50\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2785956.2790001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2785956.2790001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alternative Trust Sources: Reducing DNSSEC Signature Verification Operations with TLS
DNSSEC has been in development for 20 years. It provides for provable security when retrieving domain names through the use of a public key infrastructure (PKI). Unfortunately, there is also significant overhead involved with DNSSEC: verifying certificate chains of signed DNS messages involves extra computation, queries to remote resolvers, additional transfers, and introduces added latency into the DNS query path. We pose the question: is it possible to achieve practical security without always verifying this certificate chain if we use a different, outside source of trust between resolvers? We believe we can. Namely, by using a long-lived, mutually authenticated TLS connection between pairs of DNS resolvers, we suggest that we can maintain near-equivalent levels of security with very little extra overhead compared to a non-DNSSEC enabled resolver. By using a reputation system or probabilistically verifying a portion of DNSSEC responses would allow for near-equivalent levels of security to be reached, even in the face of compromised resolvers.