检查G的片段

S. Perron
{"title":"检查G的片段","authors":"S. Perron","doi":"10.1109/LICS.2007.18","DOIUrl":null,"url":null,"abstract":"When restricted to proving Sigma<sub>i</sub> <sup>q</sup> formulas, the quantified prepositional proof system G<sub>i</sub>* is closely related to the Sigma<sub>i</sub> <sup>b</sup> theorems of Buss's theory S<sub>2</sub> <sup>i</sup>. Namely, G<sub>i</sub>* has polynomial- size proofs of the translations of theorems of S<sub>2</sub> <sup>i</sup>, and S<sub>2</sub> <sup>i</sup> proves that G<sub>i</sub>* is sound. However, little is known about G* when proving more complex formulas. In this paper, we prove a witnessing theorem for G<sub>i</sub>* similar in style to the KPT witnessing theorem for T<sub>2</sub> <sup>i</sup>. This witnessing theorem is then used to show that S<sub>2</sub> <sup>i</sup> proves G* is sound with respect to prenex Sigma<sub>i+1</sub> <sup>q</sup> formulas. Note that unless the polynomial hierarchy collapses S<sub>2</sub> <sup>i</sup> is the weakest theory in the S<sub>2</sub> <sup>i</sup> hierarchy for which this is true. The witnessing theorem is also used to show that G<sub>1</sub>* is p-equivalent to a quantified version of extended-Frege. This is followed by a proof that Gi p-simulates G*<sub>i+1</sub>. We finish by proving that S<sub>2</sub> can be axiomatized by S<sub>2</sub> <sup>1</sup> plus axioms stating that the cut-free version of G* is sound. All together this shows that the connection between G<sub>i</sub>* and S<sub>2</sub> <sup>i</sup> does not extend to more complex formulas.","PeriodicalId":137827,"journal":{"name":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","volume":"41 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Examining The Fragments of G\",\"authors\":\"S. Perron\",\"doi\":\"10.1109/LICS.2007.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When restricted to proving Sigma<sub>i</sub> <sup>q</sup> formulas, the quantified prepositional proof system G<sub>i</sub>* is closely related to the Sigma<sub>i</sub> <sup>b</sup> theorems of Buss's theory S<sub>2</sub> <sup>i</sup>. Namely, G<sub>i</sub>* has polynomial- size proofs of the translations of theorems of S<sub>2</sub> <sup>i</sup>, and S<sub>2</sub> <sup>i</sup> proves that G<sub>i</sub>* is sound. However, little is known about G* when proving more complex formulas. In this paper, we prove a witnessing theorem for G<sub>i</sub>* similar in style to the KPT witnessing theorem for T<sub>2</sub> <sup>i</sup>. This witnessing theorem is then used to show that S<sub>2</sub> <sup>i</sup> proves G* is sound with respect to prenex Sigma<sub>i+1</sub> <sup>q</sup> formulas. Note that unless the polynomial hierarchy collapses S<sub>2</sub> <sup>i</sup> is the weakest theory in the S<sub>2</sub> <sup>i</sup> hierarchy for which this is true. The witnessing theorem is also used to show that G<sub>1</sub>* is p-equivalent to a quantified version of extended-Frege. This is followed by a proof that Gi p-simulates G*<sub>i+1</sub>. We finish by proving that S<sub>2</sub> can be axiomatized by S<sub>2</sub> <sup>1</sup> plus axioms stating that the cut-free version of G* is sound. All together this shows that the connection between G<sub>i</sub>* and S<sub>2</sub> <sup>i</sup> does not extend to more complex formulas.\",\"PeriodicalId\":137827,\"journal\":{\"name\":\"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)\",\"volume\":\"41 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2007.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2007.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当只限于证明Sigmai q公式时,量化的介词证明系统Gi*与Buss理论S2 i的Sigmai b定理密切相关,即Gi*对S2 i的定理平移具有多项式大小的证明,S2 i证明Gi*是健全的。然而,在证明更复杂的公式时,我们对G*知之甚少。在本文中,我们证明了Gi*与T2 i的KPT见证定理在风格上相似的一个见证定理。然后用这个见证定理来证明S2 i证明G*对于prenex Sigmai+ 1q公式是正确的。请注意,除非多项式层次结构崩溃,否则S2 i是S2 i层次结构中最弱的理论,因此这是正确的。见证定理也用于证明G1*与扩展- frege的量化版本p等价。接着证明Gi p模拟G*i+1。最后,我们证明S2可以由S2 1加上说明G*的无切割版本是健全的公理公理化。综上所述,Gi*和S2 i之间的联系不能推广到更复杂的公式中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining The Fragments of G
When restricted to proving Sigmai q formulas, the quantified prepositional proof system Gi* is closely related to the Sigmai b theorems of Buss's theory S2 i. Namely, Gi* has polynomial- size proofs of the translations of theorems of S2 i, and S2 i proves that Gi* is sound. However, little is known about G* when proving more complex formulas. In this paper, we prove a witnessing theorem for Gi* similar in style to the KPT witnessing theorem for T2 i. This witnessing theorem is then used to show that S2 i proves G* is sound with respect to prenex Sigmai+1 q formulas. Note that unless the polynomial hierarchy collapses S2 i is the weakest theory in the S2 i hierarchy for which this is true. The witnessing theorem is also used to show that G1* is p-equivalent to a quantified version of extended-Frege. This is followed by a proof that Gi p-simulates G*i+1. We finish by proving that S2 can be axiomatized by S2 1 plus axioms stating that the cut-free version of G* is sound. All together this shows that the connection between Gi* and S2 i does not extend to more complex formulas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信