{"title":"夹杂物增强介质强度的微极模拟","authors":"Patrick de Buhan, Luc Dormieux, Jean Salençon","doi":"10.1016/S1251-8069(99)89003-4","DOIUrl":null,"url":null,"abstract":"<div><p>Starting from a mixed modelling of a matrix material reinforced by regularly embedded inclusions regarded as straight beams, and through a homogenization procedure making use of the virtual work method, a micropolar description is obtained for the homogenized composite medium. The model is implemented within the context of the yield design theory, the strength properties of the reinforced matrix material being simply deduced from those of its individual components. The upper bound kinematic method is then applied to the stability analysis of a reinforced vertical excavation.</p></div>","PeriodicalId":100304,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","volume":"326 3","pages":"Pages 163-170"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1251-8069(99)89003-4","citationCount":"10","resultStr":"{\"title\":\"Modélisation micropolaire de la résistance d'un milieu renforcé par inclusions\",\"authors\":\"Patrick de Buhan, Luc Dormieux, Jean Salençon\",\"doi\":\"10.1016/S1251-8069(99)89003-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Starting from a mixed modelling of a matrix material reinforced by regularly embedded inclusions regarded as straight beams, and through a homogenization procedure making use of the virtual work method, a micropolar description is obtained for the homogenized composite medium. The model is implemented within the context of the yield design theory, the strength properties of the reinforced matrix material being simply deduced from those of its individual components. The upper bound kinematic method is then applied to the stability analysis of a reinforced vertical excavation.</p></div>\",\"PeriodicalId\":100304,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"volume\":\"326 3\",\"pages\":\"Pages 163-170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1251-8069(99)89003-4\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1251806999890034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1251806999890034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modélisation micropolaire de la résistance d'un milieu renforcé par inclusions
Starting from a mixed modelling of a matrix material reinforced by regularly embedded inclusions regarded as straight beams, and through a homogenization procedure making use of the virtual work method, a micropolar description is obtained for the homogenized composite medium. The model is implemented within the context of the yield design theory, the strength properties of the reinforced matrix material being simply deduced from those of its individual components. The upper bound kinematic method is then applied to the stability analysis of a reinforced vertical excavation.