线性摄动法与分岔分析预测变形位置的理论关系

Gilles Barbier , Ahmed Benallal , Valérie Cano
{"title":"线性摄动法与分岔分析预测变形位置的理论关系","authors":"Gilles Barbier ,&nbsp;Ahmed Benallal ,&nbsp;Valérie Cano","doi":"10.1016/S1251-8069(99)89001-0","DOIUrl":null,"url":null,"abstract":"<div><p>The uniqueness of mechanical response can be lost for a material with softening. For a non-viscous material, two methods are widely used to predict this phenomenon: the linear perturbation method and the bifurcation analysis. In this paper we prove that the latter method should be considered as a limit case of the former one, as already observed in some particular cases.</p></div>","PeriodicalId":100304,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","volume":"326 3","pages":"Pages 153-158"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1251-8069(99)89001-0","citationCount":"20","resultStr":"{\"title\":\"Relation théorique entre la méthode de perturbation linéaire et l'analyse de bifurcation pour la prédiction de la localisation des déformations\",\"authors\":\"Gilles Barbier ,&nbsp;Ahmed Benallal ,&nbsp;Valérie Cano\",\"doi\":\"10.1016/S1251-8069(99)89001-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The uniqueness of mechanical response can be lost for a material with softening. For a non-viscous material, two methods are widely used to predict this phenomenon: the linear perturbation method and the bifurcation analysis. In this paper we prove that the latter method should be considered as a limit case of the former one, as already observed in some particular cases.</p></div>\",\"PeriodicalId\":100304,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"volume\":\"326 3\",\"pages\":\"Pages 153-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1251-8069(99)89001-0\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1251806999890010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1251806999890010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

具有软化特性的材料可能失去其机械响应的独特性。对于非粘性材料,目前广泛采用线性摄动法和分岔分析两种方法来预测这种现象。本文证明后一种方法可以看作前一种方法的极限情况,正如在一些特殊情况下已经观察到的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relation théorique entre la méthode de perturbation linéaire et l'analyse de bifurcation pour la prédiction de la localisation des déformations

The uniqueness of mechanical response can be lost for a material with softening. For a non-viscous material, two methods are widely used to predict this phenomenon: the linear perturbation method and the bifurcation analysis. In this paper we prove that the latter method should be considered as a limit case of the former one, as already observed in some particular cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信