求解SAT混合并行执行的理论研究

Kairong Zhang , Masahiro Nagamatu
{"title":"求解SAT混合并行执行的理论研究","authors":"Kairong Zhang ,&nbsp;Masahiro Nagamatu","doi":"10.1016/j.ics.2006.12.021","DOIUrl":null,"url":null,"abstract":"<div><p>For the satisfiability problem (SAT), we have proposed a neural network, called LPPH, and a parallelization method, called “mixed parallel execution,” in which LPPH and other algorithms are executed simultaneously. In this paper we study the CPU time of the mixed parallel execution, and prove that the bigger the difference between distribution functions of CPU time of the algorithms used in the parallel execution, the more effective the mixed parallel execution is.</p></div>","PeriodicalId":84918,"journal":{"name":"International congress series","volume":"1301 ","pages":"Pages 176-179"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ics.2006.12.021","citationCount":"3","resultStr":"{\"title\":\"Theoretical study on mixed parallel execution for solving SAT\",\"authors\":\"Kairong Zhang ,&nbsp;Masahiro Nagamatu\",\"doi\":\"10.1016/j.ics.2006.12.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the satisfiability problem (SAT), we have proposed a neural network, called LPPH, and a parallelization method, called “mixed parallel execution,” in which LPPH and other algorithms are executed simultaneously. In this paper we study the CPU time of the mixed parallel execution, and prove that the bigger the difference between distribution functions of CPU time of the algorithms used in the parallel execution, the more effective the mixed parallel execution is.</p></div>\",\"PeriodicalId\":84918,\"journal\":{\"name\":\"International congress series\",\"volume\":\"1301 \",\"pages\":\"Pages 176-179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ics.2006.12.021\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International congress series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S053151310600673X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International congress series","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S053151310600673X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于可满足性问题(SAT),我们提出了一种称为LPPH的神经网络和一种称为“混合并行执行”的并行化方法,其中LPPH和其他算法同时执行。本文研究了混合并行执行的CPU时间,证明了并行执行中所用算法的CPU时间分布函数之间的差异越大,混合并行执行的效率越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical study on mixed parallel execution for solving SAT

For the satisfiability problem (SAT), we have proposed a neural network, called LPPH, and a parallelization method, called “mixed parallel execution,” in which LPPH and other algorithms are executed simultaneously. In this paper we study the CPU time of the mixed parallel execution, and prove that the bigger the difference between distribution functions of CPU time of the algorithms used in the parallel execution, the more effective the mixed parallel execution is.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信