切比雪夫动力系统的显著相关性质及其推广

Q1 Mathematics
Jin Yan, Christian Beck
{"title":"切比雪夫动力系统的显著相关性质及其推广","authors":"Jin Yan,&nbsp;Christian Beck","doi":"10.1016/j.csfx.2020.100035","DOIUrl":null,"url":null,"abstract":"<div><p>We show that, among all smooth one-dimensional maps conjugated to an <em>N</em>-ary shift (a Bernoulli shift of <em>N</em> symbols), Chebyshev maps are distinguished in the sense that they have least higher-order correlations. We generalise our consideration and study a family of shifted Chebyshev maps, presenting analytic results for two-point and higher-order correlation functions. We also review results for the eigenvalues and eigenfunctions of the Perron-Frobenius operator of <em>N</em>th order Chebyshev maps and their shifted generalisations. The spectrum is degenerate for odd <em>N</em>. Finally, we consider coupled map lattices (CMLs) of shifted Chebyshev maps and numerically investigate zeros of the temporal and spatial nearest-neighbour correlations, which are of interest in chaotically quantized field theories.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"5 ","pages":"Article 100035"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100035","citationCount":"4","resultStr":"{\"title\":\"Distinguished correlation properties of Chebyshev dynamical systems and their generalisations\",\"authors\":\"Jin Yan,&nbsp;Christian Beck\",\"doi\":\"10.1016/j.csfx.2020.100035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that, among all smooth one-dimensional maps conjugated to an <em>N</em>-ary shift (a Bernoulli shift of <em>N</em> symbols), Chebyshev maps are distinguished in the sense that they have least higher-order correlations. We generalise our consideration and study a family of shifted Chebyshev maps, presenting analytic results for two-point and higher-order correlation functions. We also review results for the eigenvalues and eigenfunctions of the Perron-Frobenius operator of <em>N</em>th order Chebyshev maps and their shifted generalisations. The spectrum is degenerate for odd <em>N</em>. Finally, we consider coupled map lattices (CMLs) of shifted Chebyshev maps and numerically investigate zeros of the temporal and spatial nearest-neighbour correlations, which are of interest in chaotically quantized field theories.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"5 \",\"pages\":\"Article 100035\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100035\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054420300166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054420300166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

我们证明,在所有共轭到N元位移(N个符号的伯努利位移)的光滑一维映射中,切比雪夫映射的区别在于它们具有最少的高阶相关性。我们推广了我们的考虑并研究了一组移位的切比雪夫映射,给出了两点和高阶相关函数的解析结果。我们还回顾了n阶Chebyshev映射的Perron-Frobenius算子的特征值和特征函数及其移位推广的结果。最后,我们考虑了移位切比雪夫映射的耦合映射格(cml),并数值研究了混沌量子化场论中感兴趣的时空近邻相关的零点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinguished correlation properties of Chebyshev dynamical systems and their generalisations

We show that, among all smooth one-dimensional maps conjugated to an N-ary shift (a Bernoulli shift of N symbols), Chebyshev maps are distinguished in the sense that they have least higher-order correlations. We generalise our consideration and study a family of shifted Chebyshev maps, presenting analytic results for two-point and higher-order correlation functions. We also review results for the eigenvalues and eigenfunctions of the Perron-Frobenius operator of Nth order Chebyshev maps and their shifted generalisations. The spectrum is degenerate for odd N. Finally, we consider coupled map lattices (CMLs) of shifted Chebyshev maps and numerically investigate zeros of the temporal and spatial nearest-neighbour correlations, which are of interest in chaotically quantized field theories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信