{"title":"快速波动信道中的连续变量量子秘密共享","authors":"Fangli Yang;Daowen Qiu;Paulo Mateus","doi":"10.1109/TQE.2023.3322171","DOIUrl":null,"url":null,"abstract":"Recently, several continuous-variable quantum secret sharing (CV-QSS) protocols were proposed, while most of them are limited to the fiber channel systems with a relatively stable transmissivity. However, by means of complex channels, the transmissivity fluctuates dramatically in time with a probability distribution, which will lead to a fast-fluctuating attack. Therefore, the security analysis of CV-QSS in fiber channels may not apply to CV-QSS in complex channels. In this article, we study the CV-QSS protocol in the absence of uniform fast-fluctuating channels whose transmissivity changes with respect to a uniform probability distribution. We give a lower bound of secret key rate to provide security analysis against the fast-fluctuating attack for the CV-QSS protocol. In particular, the realistic highly asymmetric beam splitter (HABS) in CV-QSS protocol is investigated in detail here for the first time, and numerical simulation shows that the security bound is overestimated when the HABS is treated as the perfect device.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10274121","citationCount":"0","resultStr":"{\"title\":\"Continuous-Variable Quantum Secret Sharing in Fast-Fluctuating Channels\",\"authors\":\"Fangli Yang;Daowen Qiu;Paulo Mateus\",\"doi\":\"10.1109/TQE.2023.3322171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, several continuous-variable quantum secret sharing (CV-QSS) protocols were proposed, while most of them are limited to the fiber channel systems with a relatively stable transmissivity. However, by means of complex channels, the transmissivity fluctuates dramatically in time with a probability distribution, which will lead to a fast-fluctuating attack. Therefore, the security analysis of CV-QSS in fiber channels may not apply to CV-QSS in complex channels. In this article, we study the CV-QSS protocol in the absence of uniform fast-fluctuating channels whose transmissivity changes with respect to a uniform probability distribution. We give a lower bound of secret key rate to provide security analysis against the fast-fluctuating attack for the CV-QSS protocol. In particular, the realistic highly asymmetric beam splitter (HABS) in CV-QSS protocol is investigated in detail here for the first time, and numerical simulation shows that the security bound is overestimated when the HABS is treated as the perfect device.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"4 \",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10274121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10274121/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10274121/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous-Variable Quantum Secret Sharing in Fast-Fluctuating Channels
Recently, several continuous-variable quantum secret sharing (CV-QSS) protocols were proposed, while most of them are limited to the fiber channel systems with a relatively stable transmissivity. However, by means of complex channels, the transmissivity fluctuates dramatically in time with a probability distribution, which will lead to a fast-fluctuating attack. Therefore, the security analysis of CV-QSS in fiber channels may not apply to CV-QSS in complex channels. In this article, we study the CV-QSS protocol in the absence of uniform fast-fluctuating channels whose transmissivity changes with respect to a uniform probability distribution. We give a lower bound of secret key rate to provide security analysis against the fast-fluctuating attack for the CV-QSS protocol. In particular, the realistic highly asymmetric beam splitter (HABS) in CV-QSS protocol is investigated in detail here for the first time, and numerical simulation shows that the security bound is overestimated when the HABS is treated as the perfect device.