{"title":"比较交叉分类数据的随机效应模型、普通最小二乘法或带有聚类稳健标准误差的固定效应。","authors":"Young Ri Lee, James E Pustejovsky","doi":"10.1037/met0000538","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-classified random effects modeling (CCREM) is a common approach for analyzing cross-classified data in psychology, education research, and other fields. However, when the focus of a study is on the regression coefficients at Level 1 rather than on the random effects, ordinary least squares regression with cluster robust variance estimators (OLS-CRVE) or fixed effects regression with CRVE (FE-CRVE) could be appropriate approaches. These alternative methods are potentially advantageous because they rely on weaker assumptions than those required by CCREM. We conducted a Monte Carlo Simulation study to compare the performance of CCREM, OLS-CRVE, and FE-CRVE in models, including conditions where homoscedasticity assumptions and exogeneity assumptions held and conditions where they were violated, as well as conditions with unmodeled random slopes. We found that CCREM out-performed the alternative approaches when its assumptions are all met. However, when homoscedasticity assumptions are violated, OLS-CRVE and FE-CRVE provided similar or better performance than CCREM. When the exogeneity assumption is violated, only FE-CRVE provided adequate performance. Further, OLS-CRVE and FE-CRVE provided more accurate inferences than CCREM in the presence of unmodeled random slopes. Thus, we recommend two-way FE-CRVE as a good alternative to CCREM, particularly if the homoscedasticity or exogeneity assumptions of the CCREM might be in doubt. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"1084-1099"},"PeriodicalIF":7.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing random effects models, ordinary least squares, or fixed effects with cluster robust standard errors for cross-classified data.\",\"authors\":\"Young Ri Lee, James E Pustejovsky\",\"doi\":\"10.1037/met0000538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cross-classified random effects modeling (CCREM) is a common approach for analyzing cross-classified data in psychology, education research, and other fields. However, when the focus of a study is on the regression coefficients at Level 1 rather than on the random effects, ordinary least squares regression with cluster robust variance estimators (OLS-CRVE) or fixed effects regression with CRVE (FE-CRVE) could be appropriate approaches. These alternative methods are potentially advantageous because they rely on weaker assumptions than those required by CCREM. We conducted a Monte Carlo Simulation study to compare the performance of CCREM, OLS-CRVE, and FE-CRVE in models, including conditions where homoscedasticity assumptions and exogeneity assumptions held and conditions where they were violated, as well as conditions with unmodeled random slopes. We found that CCREM out-performed the alternative approaches when its assumptions are all met. However, when homoscedasticity assumptions are violated, OLS-CRVE and FE-CRVE provided similar or better performance than CCREM. When the exogeneity assumption is violated, only FE-CRVE provided adequate performance. Further, OLS-CRVE and FE-CRVE provided more accurate inferences than CCREM in the presence of unmodeled random slopes. Thus, we recommend two-way FE-CRVE as a good alternative to CCREM, particularly if the homoscedasticity or exogeneity assumptions of the CCREM might be in doubt. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"1084-1099\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000538\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000538","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparing random effects models, ordinary least squares, or fixed effects with cluster robust standard errors for cross-classified data.
Cross-classified random effects modeling (CCREM) is a common approach for analyzing cross-classified data in psychology, education research, and other fields. However, when the focus of a study is on the regression coefficients at Level 1 rather than on the random effects, ordinary least squares regression with cluster robust variance estimators (OLS-CRVE) or fixed effects regression with CRVE (FE-CRVE) could be appropriate approaches. These alternative methods are potentially advantageous because they rely on weaker assumptions than those required by CCREM. We conducted a Monte Carlo Simulation study to compare the performance of CCREM, OLS-CRVE, and FE-CRVE in models, including conditions where homoscedasticity assumptions and exogeneity assumptions held and conditions where they were violated, as well as conditions with unmodeled random slopes. We found that CCREM out-performed the alternative approaches when its assumptions are all met. However, when homoscedasticity assumptions are violated, OLS-CRVE and FE-CRVE provided similar or better performance than CCREM. When the exogeneity assumption is violated, only FE-CRVE provided adequate performance. Further, OLS-CRVE and FE-CRVE provided more accurate inferences than CCREM in the presence of unmodeled random slopes. Thus, we recommend two-way FE-CRVE as a good alternative to CCREM, particularly if the homoscedasticity or exogeneity assumptions of the CCREM might be in doubt. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.