比较交叉分类数据的随机效应模型、普通最小二乘法或带有聚类稳健标准误差的固定效应。

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Psychological methods Pub Date : 2024-12-01 Epub Date: 2023-03-09 DOI:10.1037/met0000538
Young Ri Lee, James E Pustejovsky
{"title":"比较交叉分类数据的随机效应模型、普通最小二乘法或带有聚类稳健标准误差的固定效应。","authors":"Young Ri Lee, James E Pustejovsky","doi":"10.1037/met0000538","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-classified random effects modeling (CCREM) is a common approach for analyzing cross-classified data in psychology, education research, and other fields. However, when the focus of a study is on the regression coefficients at Level 1 rather than on the random effects, ordinary least squares regression with cluster robust variance estimators (OLS-CRVE) or fixed effects regression with CRVE (FE-CRVE) could be appropriate approaches. These alternative methods are potentially advantageous because they rely on weaker assumptions than those required by CCREM. We conducted a Monte Carlo Simulation study to compare the performance of CCREM, OLS-CRVE, and FE-CRVE in models, including conditions where homoscedasticity assumptions and exogeneity assumptions held and conditions where they were violated, as well as conditions with unmodeled random slopes. We found that CCREM out-performed the alternative approaches when its assumptions are all met. However, when homoscedasticity assumptions are violated, OLS-CRVE and FE-CRVE provided similar or better performance than CCREM. When the exogeneity assumption is violated, only FE-CRVE provided adequate performance. Further, OLS-CRVE and FE-CRVE provided more accurate inferences than CCREM in the presence of unmodeled random slopes. Thus, we recommend two-way FE-CRVE as a good alternative to CCREM, particularly if the homoscedasticity or exogeneity assumptions of the CCREM might be in doubt. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"1084-1099"},"PeriodicalIF":7.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing random effects models, ordinary least squares, or fixed effects with cluster robust standard errors for cross-classified data.\",\"authors\":\"Young Ri Lee, James E Pustejovsky\",\"doi\":\"10.1037/met0000538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cross-classified random effects modeling (CCREM) is a common approach for analyzing cross-classified data in psychology, education research, and other fields. However, when the focus of a study is on the regression coefficients at Level 1 rather than on the random effects, ordinary least squares regression with cluster robust variance estimators (OLS-CRVE) or fixed effects regression with CRVE (FE-CRVE) could be appropriate approaches. These alternative methods are potentially advantageous because they rely on weaker assumptions than those required by CCREM. We conducted a Monte Carlo Simulation study to compare the performance of CCREM, OLS-CRVE, and FE-CRVE in models, including conditions where homoscedasticity assumptions and exogeneity assumptions held and conditions where they were violated, as well as conditions with unmodeled random slopes. We found that CCREM out-performed the alternative approaches when its assumptions are all met. However, when homoscedasticity assumptions are violated, OLS-CRVE and FE-CRVE provided similar or better performance than CCREM. When the exogeneity assumption is violated, only FE-CRVE provided adequate performance. Further, OLS-CRVE and FE-CRVE provided more accurate inferences than CCREM in the presence of unmodeled random slopes. Thus, we recommend two-way FE-CRVE as a good alternative to CCREM, particularly if the homoscedasticity or exogeneity assumptions of the CCREM might be in doubt. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"1084-1099\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000538\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000538","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

交叉分类随机效应建模(CCREM)是心理学、教育研究和其他领域分析交叉分类数据的常用方法。然而,当研究的重点是第 1 层的回归系数而不是随机效应时,普通最小二乘回归与聚类稳健方差估计(OLS-CRVE)或固定效应回归与 CRVE(FE-CRVE)可能是合适的方法。这些替代方法具有潜在优势,因为它们所依赖的假设条件比 CCREM 所要求的要弱。我们进行了蒙特卡罗模拟研究,比较了 CCREM、OLS-CRVE 和 FE-CRVE 在模型中的表现,包括同方差假设和外生性假设成立的条件和违反这些假设的条件,以及未建模随机斜率的条件。我们发现,当 CCREM 的假设条件全部满足时,其性能优于其他方法。然而,当违反同方差假定时,OLS-CRVE 和 FE-CRVE 的表现与 CCREM 相似或更好。当违反外生性假设时,只有 FE-CRVE 提供了足够的性能。此外,在存在未建模随机斜率的情况下,OLS-CRVE 和 FE-CRVE 比 CCREM 提供了更准确的推断。因此,我们推荐双向 FE-CRVE 作为 CCREM 的良好替代方案,尤其是在 CCREM 的同方差或外生性假设可能存在疑问的情况下。(PsycInfo Database Record (c) 2023 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing random effects models, ordinary least squares, or fixed effects with cluster robust standard errors for cross-classified data.

Cross-classified random effects modeling (CCREM) is a common approach for analyzing cross-classified data in psychology, education research, and other fields. However, when the focus of a study is on the regression coefficients at Level 1 rather than on the random effects, ordinary least squares regression with cluster robust variance estimators (OLS-CRVE) or fixed effects regression with CRVE (FE-CRVE) could be appropriate approaches. These alternative methods are potentially advantageous because they rely on weaker assumptions than those required by CCREM. We conducted a Monte Carlo Simulation study to compare the performance of CCREM, OLS-CRVE, and FE-CRVE in models, including conditions where homoscedasticity assumptions and exogeneity assumptions held and conditions where they were violated, as well as conditions with unmodeled random slopes. We found that CCREM out-performed the alternative approaches when its assumptions are all met. However, when homoscedasticity assumptions are violated, OLS-CRVE and FE-CRVE provided similar or better performance than CCREM. When the exogeneity assumption is violated, only FE-CRVE provided adequate performance. Further, OLS-CRVE and FE-CRVE provided more accurate inferences than CCREM in the presence of unmodeled random slopes. Thus, we recommend two-way FE-CRVE as a good alternative to CCREM, particularly if the homoscedasticity or exogeneity assumptions of the CCREM might be in doubt. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信