{"title":"平均治疗效果和量化治疗效果的乘法稳健匹配估计值。","authors":"Shu Yang, Yunshu Zhang","doi":"10.1111/sjos.12585","DOIUrl":null,"url":null,"abstract":"<p><p>Propensity score matching has been a long-standing tradition for handling confounding in causal inference, however requiring stringent model assumptions. In this article, we propose novel double score matching (DSM) utilizing both the propensity score and prognostic score. To gain the protection of possible model misspecification, we posit multiple candidate models for each score. We show that the de-biasing DSM estimator achieves the multiple robustness property in that it is consistent if any one of the score models is correctly specified. We characterize the asymptotic distribution for the DSM estimator requiring only one correct model specification based on the martingale representations of the matching estimators and theory for local Normal experiments. We also provide a two-stage replication method for variance estimation and extend DSM for quantile estimation. Simulation demonstrates DSM outperforms single score matching and prevailing multiply robust weighting estimators in the presence of extreme propensity scores.</p>","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949738/pdf/nihms-1780199.pdf","citationCount":"0","resultStr":"{\"title\":\"Multiply robust matching estimators of average and quantile treatment effects.\",\"authors\":\"Shu Yang, Yunshu Zhang\",\"doi\":\"10.1111/sjos.12585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Propensity score matching has been a long-standing tradition for handling confounding in causal inference, however requiring stringent model assumptions. In this article, we propose novel double score matching (DSM) utilizing both the propensity score and prognostic score. To gain the protection of possible model misspecification, we posit multiple candidate models for each score. We show that the de-biasing DSM estimator achieves the multiple robustness property in that it is consistent if any one of the score models is correctly specified. We characterize the asymptotic distribution for the DSM estimator requiring only one correct model specification based on the martingale representations of the matching estimators and theory for local Normal experiments. We also provide a two-stage replication method for variance estimation and extend DSM for quantile estimation. Simulation demonstrates DSM outperforms single score matching and prevailing multiply robust weighting estimators in the presence of extreme propensity scores.</p>\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949738/pdf/nihms-1780199.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12585\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12585","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Multiply robust matching estimators of average and quantile treatment effects.
Propensity score matching has been a long-standing tradition for handling confounding in causal inference, however requiring stringent model assumptions. In this article, we propose novel double score matching (DSM) utilizing both the propensity score and prognostic score. To gain the protection of possible model misspecification, we posit multiple candidate models for each score. We show that the de-biasing DSM estimator achieves the multiple robustness property in that it is consistent if any one of the score models is correctly specified. We characterize the asymptotic distribution for the DSM estimator requiring only one correct model specification based on the martingale representations of the matching estimators and theory for local Normal experiments. We also provide a two-stage replication method for variance estimation and extend DSM for quantile estimation. Simulation demonstrates DSM outperforms single score matching and prevailing multiply robust weighting estimators in the presence of extreme propensity scores.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.