一般曲面三角化的局部标准

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2023-01-01 Epub Date: 2022-09-30 DOI:10.1007/s00454-022-00431-7
Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh, Mathijs Wintraecken
{"title":"一般曲面三角化的局部标准","authors":"Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh, Mathijs Wintraecken","doi":"10.1007/s00454-022-00431-7","DOIUrl":null,"url":null,"abstract":"<p><p>We present criteria for establishing a triangulation of a manifold. Given a manifold <i>M</i>, a simplicial complex  <math><mi>A</mi></math> , and a map <i>H</i> from the underlying space of <math><mi>A</mi></math> to <i>M</i>, our criteria are presented in local coordinate charts for <i>M</i>, and ensure that <i>H</i> is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on <i>M</i>. No Delaunay property of <math><mi>A</mi></math> is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"69 1","pages":"156-191"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805998/pdf/","citationCount":"0","resultStr":"{\"title\":\"Local Criteria for Triangulating General Manifolds.\",\"authors\":\"Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh, Mathijs Wintraecken\",\"doi\":\"10.1007/s00454-022-00431-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present criteria for establishing a triangulation of a manifold. Given a manifold <i>M</i>, a simplicial complex  <math><mi>A</mi></math> , and a map <i>H</i> from the underlying space of <math><mi>A</mi></math> to <i>M</i>, our criteria are presented in local coordinate charts for <i>M</i>, and ensure that <i>H</i> is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on <i>M</i>. No Delaunay property of <math><mi>A</mi></math> is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"69 1\",\"pages\":\"156-191\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805998/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-022-00431-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00431-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了建立流形三角剖分的标准。给定一个流形 M、一个单纯复数 A 和一个从 A 的底层空间到 M 的映射 H,我们的标准以 M 的局部坐标图呈现,并确保 H 是同构的。这些标准不需要可微分结构,甚至不需要 M 上明确的度量。这一结果为通过局部坐标补丁构建简面复数的算法提供了三角剖分保证。由于这些准则在这种情况下很容易得到验证,因此有望得到普遍应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Local Criteria for Triangulating General Manifolds.

Local Criteria for Triangulating General Manifolds.

Local Criteria for Triangulating General Manifolds.

We present criteria for establishing a triangulation of a manifold. Given a manifold M, a simplicial complex  A , and a map H from the underlying space of A to M, our criteria are presented in local coordinate charts for M, and ensure that H is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on M. No Delaunay property of A is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信