具有随机优势的双组分混合物的半参数建模

Pub Date : 2022-05-24 DOI:10.1007/s10463-022-00835-5
Jingjing Wu, Tasnima Abedin, Qiang Zhao
{"title":"具有随机优势的双组分混合物的半参数建模","authors":"Jingjing Wu,&nbsp;Tasnima Abedin,&nbsp;Qiang Zhao","doi":"10.1007/s10463-022-00835-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we studied a two-component mixture model with stochastic dominance constraint, a model arising naturally from many genetic studies. To model the stochastic dominance, we proposed a semiparametric modelling of the log of density ratio. More specifically, when the log of the ratio of two component densities is in a linear regression form, the stochastic dominance is immediately satisfied. For the resulting semiparametric mixture model, we proposed two estimators, maximum empirical likelihood estimator (MELE) and minimum Hellinger distance estimator (MHDE), and investigated their asymptotic properties such as consistency and normality. In addition, to test the validity of the proposed semiparametric model, we developed Kolmogorov–Smirnov type tests based on the two estimators. The finite-sample performance, in terms of both efficiency and robustness, of the two estimators and the tests were examined and compared via both thorough Monte Carlo simulation studies and real data analysis.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-022-00835-5.pdf","citationCount":"1","resultStr":"{\"title\":\"Semiparametric modelling of two-component mixtures with stochastic dominance\",\"authors\":\"Jingjing Wu,&nbsp;Tasnima Abedin,&nbsp;Qiang Zhao\",\"doi\":\"10.1007/s10463-022-00835-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we studied a two-component mixture model with stochastic dominance constraint, a model arising naturally from many genetic studies. To model the stochastic dominance, we proposed a semiparametric modelling of the log of density ratio. More specifically, when the log of the ratio of two component densities is in a linear regression form, the stochastic dominance is immediately satisfied. For the resulting semiparametric mixture model, we proposed two estimators, maximum empirical likelihood estimator (MELE) and minimum Hellinger distance estimator (MHDE), and investigated their asymptotic properties such as consistency and normality. In addition, to test the validity of the proposed semiparametric model, we developed Kolmogorov–Smirnov type tests based on the two estimators. The finite-sample performance, in terms of both efficiency and robustness, of the two estimators and the tests were examined and compared via both thorough Monte Carlo simulation studies and real data analysis.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10463-022-00835-5.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00835-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00835-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们研究了具有随机优势约束的双组分混合模型,这是许多遗传学研究中自然产生的模型。为了模拟随机优势,我们提出了密度比对数的半参数模型。更具体地说,当两分量密度之比的对数是线性回归形式时,立即满足随机优势。对于得到的半参数混合模型,我们提出了两个估计量,即最大经验似然估计量(MELE)和最小Hellinger距离估计量(MHDE),并研究了它们的渐近性质,如一致性和正态性。此外,为了检验所提出的半参数模型的有效性,我们基于这两个估计量开发了Kolmogorov-Smirnov型检验。通过彻底的蒙特卡罗模拟研究和实际数据分析,对两个估计器和测试的有限样本性能(效率和鲁棒性)进行了检查和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semiparametric modelling of two-component mixtures with stochastic dominance

Semiparametric modelling of two-component mixtures with stochastic dominance

Semiparametric modelling of two-component mixtures with stochastic dominance

分享
查看原文
Semiparametric modelling of two-component mixtures with stochastic dominance

In this work, we studied a two-component mixture model with stochastic dominance constraint, a model arising naturally from many genetic studies. To model the stochastic dominance, we proposed a semiparametric modelling of the log of density ratio. More specifically, when the log of the ratio of two component densities is in a linear regression form, the stochastic dominance is immediately satisfied. For the resulting semiparametric mixture model, we proposed two estimators, maximum empirical likelihood estimator (MELE) and minimum Hellinger distance estimator (MHDE), and investigated their asymptotic properties such as consistency and normality. In addition, to test the validity of the proposed semiparametric model, we developed Kolmogorov–Smirnov type tests based on the two estimators. The finite-sample performance, in terms of both efficiency and robustness, of the two estimators and the tests were examined and compared via both thorough Monte Carlo simulation studies and real data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信