{"title":"飞行时间中子Bragg和总散射的洛伦兹因子。","authors":"Yuanpeng Zhang, Jue Liu, Matthew G Tucker","doi":"10.1107/S2053273322010427","DOIUrl":null,"url":null,"abstract":"<p><p>The three fundamental origins of the Lorentz factor for neutron time-of-flight powder diffraction are revisited. A detailed derivation of the Lorentz factor is presented in the context of diffuse scattering modelling in reciprocal space when perfect periodicity is assumed, and the total scattering pattern is constructed in its discrete form - the factor in this case becomes 1/Q<sup>2</sup> (or d<sup>2</sup>). Discussion is also presented with respect to practical data reduction where a vanadium measurement is usually taken as the normalization factor (to account for various factors such as detector efficiency), and it is shown that the existence of the Lorentz factor is independent of such a normalization process.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":"79 Pt 1","pages":"20-24"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lorentz factor for time-of-flight neutron Bragg and total scattering.\",\"authors\":\"Yuanpeng Zhang, Jue Liu, Matthew G Tucker\",\"doi\":\"10.1107/S2053273322010427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The three fundamental origins of the Lorentz factor for neutron time-of-flight powder diffraction are revisited. A detailed derivation of the Lorentz factor is presented in the context of diffuse scattering modelling in reciprocal space when perfect periodicity is assumed, and the total scattering pattern is constructed in its discrete form - the factor in this case becomes 1/Q<sup>2</sup> (or d<sup>2</sup>). Discussion is also presented with respect to practical data reduction where a vanadium measurement is usually taken as the normalization factor (to account for various factors such as detector efficiency), and it is shown that the existence of the Lorentz factor is independent of such a normalization process.</p>\",\"PeriodicalId\":106,\"journal\":{\"name\":\"Acta Crystallographica Section A: Foundations and Advances\",\"volume\":\"79 Pt 1\",\"pages\":\"20-24\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A: Foundations and Advances\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053273322010427\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273322010427","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Lorentz factor for time-of-flight neutron Bragg and total scattering.
The three fundamental origins of the Lorentz factor for neutron time-of-flight powder diffraction are revisited. A detailed derivation of the Lorentz factor is presented in the context of diffuse scattering modelling in reciprocal space when perfect periodicity is assumed, and the total scattering pattern is constructed in its discrete form - the factor in this case becomes 1/Q2 (or d2). Discussion is also presented with respect to practical data reduction where a vanadium measurement is usually taken as the normalization factor (to account for various factors such as detector efficiency), and it is shown that the existence of the Lorentz factor is independent of such a normalization process.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.