右美托咪定通过Nrf2/HO-1途径保护罗哌卡因诱导的神经元焦亡。

IF 1.8 4区 医学 Q4 TOXICOLOGY
Run Wang, Pengfei Liu, Fan Li, Hui Qiao
{"title":"右美托咪定通过Nrf2/HO-1途径保护罗哌卡因诱导的神经元焦亡。","authors":"Run Wang,&nbsp;Pengfei Liu,&nbsp;Fan Li,&nbsp;Hui Qiao","doi":"10.2131/jts.48.139","DOIUrl":null,"url":null,"abstract":"<p><p>Dexmedetomidine (DEX) has been demonstrated to protect against ropivacaine (Ropi)-induced neuronal damages. This study was conducted to explore the protective role of DEX in Ropi-induced neuronal pyroptosis and provide a strategy to eliminate Ropi-induced neurotoxicity. The impacts of different concentrations of Ropi and DEX on neurotoxicity in SK-N-SH cells were evaluated by cell counting kit-8 assay and lactic dehydrogenase assay kits. Levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NLR family pyrin domain containing 3 (NLRP3), cleaved Caspase-1, cleaved N-terminal gasdermin D, interleukin (IL)-1β, and IL-18 were measured by real-time quantitative PCR, Western blotting, and enzyme linked immunosorbent assay. The Nrf2 level after nuclear/cytoplasmic separation was quantified. SK-N-SH cells were treated with si-Nrf2, Nigericin (NLRP3 activator), and Zinc Protoporphyrin (HO-1 inhibitor) to validate the mechanism. Ropi reduced SK-N-SH cell viability in a concentration- and time-dependent manner. DEX treatment alleviated Ropi-induced toxicity and inhibited pyroptosis. Ropi increased the expression levels of Nrf2 and HO-1, and DEX further enhanced the increases and promoted Nrf2 nuclear translocation. Nrf2/HO-1 inhibition or NLRP3 activation both neutralized the inhibitory role of DEX in Ropi-induced pyroptosis of SK-N-SH cells. Overall, DEX promoted the Nrf2/HO-1 pathway to inhibit NLRP3 expression, thus alleviating Ropi-induced neuronal pyroptosis.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"48 3","pages":"139-148"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dexmedetomidine protects against Ropivacaine-induced neuronal pyroptosis via the Nrf2/HO-1 pathway.\",\"authors\":\"Run Wang,&nbsp;Pengfei Liu,&nbsp;Fan Li,&nbsp;Hui Qiao\",\"doi\":\"10.2131/jts.48.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dexmedetomidine (DEX) has been demonstrated to protect against ropivacaine (Ropi)-induced neuronal damages. This study was conducted to explore the protective role of DEX in Ropi-induced neuronal pyroptosis and provide a strategy to eliminate Ropi-induced neurotoxicity. The impacts of different concentrations of Ropi and DEX on neurotoxicity in SK-N-SH cells were evaluated by cell counting kit-8 assay and lactic dehydrogenase assay kits. Levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NLR family pyrin domain containing 3 (NLRP3), cleaved Caspase-1, cleaved N-terminal gasdermin D, interleukin (IL)-1β, and IL-18 were measured by real-time quantitative PCR, Western blotting, and enzyme linked immunosorbent assay. The Nrf2 level after nuclear/cytoplasmic separation was quantified. SK-N-SH cells were treated with si-Nrf2, Nigericin (NLRP3 activator), and Zinc Protoporphyrin (HO-1 inhibitor) to validate the mechanism. Ropi reduced SK-N-SH cell viability in a concentration- and time-dependent manner. DEX treatment alleviated Ropi-induced toxicity and inhibited pyroptosis. Ropi increased the expression levels of Nrf2 and HO-1, and DEX further enhanced the increases and promoted Nrf2 nuclear translocation. Nrf2/HO-1 inhibition or NLRP3 activation both neutralized the inhibitory role of DEX in Ropi-induced pyroptosis of SK-N-SH cells. Overall, DEX promoted the Nrf2/HO-1 pathway to inhibit NLRP3 expression, thus alleviating Ropi-induced neuronal pyroptosis.</p>\",\"PeriodicalId\":17654,\"journal\":{\"name\":\"Journal of Toxicological Sciences\",\"volume\":\"48 3\",\"pages\":\"139-148\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2131/jts.48.139\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.48.139","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

右美托咪定(DEX)已被证明可以防止罗哌卡因(Ropi)诱导的神经元损伤。本研究旨在探讨DEX对ropi诱导的神经元焦亡的保护作用,并为消除ropi诱导的神经毒性提供策略。采用细胞计数试剂盒-8和乳酸脱氢酶测定试剂盒评估不同浓度Ropi和DEX对SK-N-SH细胞神经毒性的影响。采用实时定量PCR、Western blotting和酶联免疫吸附法检测核因子-红细胞2相关因子2 (Nrf2)、血红素加氧酶1 (HO-1)、NLR家族pyrin domain containing 3 (NLRP3)、裂解型Caspase-1、裂解型n端gasdermin D、白细胞介素(IL)-1β和IL-18的水平。定量核/细胞质分离后Nrf2水平。用si-Nrf2、Nigericin (NLRP3激活剂)和zn Protoporphyrin (HO-1抑制剂)处理SK-N-SH细胞以验证其机制。Ropi以浓度和时间依赖性的方式降低SK-N-SH细胞活力。DEX治疗可减轻ropi引起的毒性,抑制焦亡。Ropi提高了Nrf2和HO-1的表达水平,DEX进一步增强了Nrf2的表达水平,促进了Nrf2核易位。Nrf2/HO-1抑制或NLRP3激活均能中和DEX对ropi诱导的SK-N-SH细胞焦亡的抑制作用。综上所述,DEX可促进Nrf2/HO-1通路抑制NLRP3的表达,从而减轻ropi诱导的神经元焦亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dexmedetomidine protects against Ropivacaine-induced neuronal pyroptosis via the Nrf2/HO-1 pathway.

Dexmedetomidine (DEX) has been demonstrated to protect against ropivacaine (Ropi)-induced neuronal damages. This study was conducted to explore the protective role of DEX in Ropi-induced neuronal pyroptosis and provide a strategy to eliminate Ropi-induced neurotoxicity. The impacts of different concentrations of Ropi and DEX on neurotoxicity in SK-N-SH cells were evaluated by cell counting kit-8 assay and lactic dehydrogenase assay kits. Levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NLR family pyrin domain containing 3 (NLRP3), cleaved Caspase-1, cleaved N-terminal gasdermin D, interleukin (IL)-1β, and IL-18 were measured by real-time quantitative PCR, Western blotting, and enzyme linked immunosorbent assay. The Nrf2 level after nuclear/cytoplasmic separation was quantified. SK-N-SH cells were treated with si-Nrf2, Nigericin (NLRP3 activator), and Zinc Protoporphyrin (HO-1 inhibitor) to validate the mechanism. Ropi reduced SK-N-SH cell viability in a concentration- and time-dependent manner. DEX treatment alleviated Ropi-induced toxicity and inhibited pyroptosis. Ropi increased the expression levels of Nrf2 and HO-1, and DEX further enhanced the increases and promoted Nrf2 nuclear translocation. Nrf2/HO-1 inhibition or NLRP3 activation both neutralized the inhibitory role of DEX in Ropi-induced pyroptosis of SK-N-SH cells. Overall, DEX promoted the Nrf2/HO-1 pathway to inhibit NLRP3 expression, thus alleviating Ropi-induced neuronal pyroptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
4-8 weeks
期刊介绍: The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信