{"title":"三丁基锡通过Keap1的巨噬非依赖性减少激活Keap1- nrf2途径。","authors":"Misaki Hatano, Shunichi Hatamiya, Masatsugu Miyara, Yaichiro Kotake","doi":"10.2131/jts.48.161","DOIUrl":null,"url":null,"abstract":"<p><p>Tributyltin (TBT) is an environmental chemical, which was used as an antifouling agent for ships. Although its use has been banned, it is still persistently present in ocean sediments. Although TBT reportedly causes various toxicity in mammals, few studies on the mechanisms of biological response against TBT toxicity exist. The well-established Keap1-Nrf2 pathway is activated as a cytoprotective mechanism under stressful conditions. The relationship between TBT and the Keap1-Nrf2 pathway remains unclear. In the present study, we evaluated the effect of TBT on the Keap1-Nrf2 pathway. TBT reduced Keap1 protein expression in Neuro2a cells, a mouse neuroblastoma cell line, after 6 hr without altering mRNA expression levels. TBT also promoted the nuclear translocation of Nrf2, a transcription factor for antioxidant proteins, after 12 hr and augmented the expression of heme oxygenase 1, a downstream protein of Nrf2. Furthermore, TBT decreased Keap1 levels in mouse embryonic fibroblast (MEF) cells, with the knockout of Atg5, which is essential for macroautophagy, as well as in wild-type MEF cells. These results suggest that TBT activates the Keap1-Nrf2 pathway via the reduction in the Keap1 protein level in a macroautophagy-independent manner. The Keap1-Nrf2 pathway is activated by conformational changes in Keap1 induced by reactive oxygen species or electrophiles. Furthermore, any unutilized Keap1 protein is degraded by macroautophagy. Understanding the novel mechanism governing the macroautophagy-independent reduction in Keap1 by TBT may provide insights into the unresolved biological response mechanism against TBT toxicity and the activation mechanism of the Keap1-Nrf2 pathway.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"48 3","pages":"161-168"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tributyltin activates the Keap1-Nrf2 pathway via a macroautophagy-independent reduction in Keap1.\",\"authors\":\"Misaki Hatano, Shunichi Hatamiya, Masatsugu Miyara, Yaichiro Kotake\",\"doi\":\"10.2131/jts.48.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tributyltin (TBT) is an environmental chemical, which was used as an antifouling agent for ships. Although its use has been banned, it is still persistently present in ocean sediments. Although TBT reportedly causes various toxicity in mammals, few studies on the mechanisms of biological response against TBT toxicity exist. The well-established Keap1-Nrf2 pathway is activated as a cytoprotective mechanism under stressful conditions. The relationship between TBT and the Keap1-Nrf2 pathway remains unclear. In the present study, we evaluated the effect of TBT on the Keap1-Nrf2 pathway. TBT reduced Keap1 protein expression in Neuro2a cells, a mouse neuroblastoma cell line, after 6 hr without altering mRNA expression levels. TBT also promoted the nuclear translocation of Nrf2, a transcription factor for antioxidant proteins, after 12 hr and augmented the expression of heme oxygenase 1, a downstream protein of Nrf2. Furthermore, TBT decreased Keap1 levels in mouse embryonic fibroblast (MEF) cells, with the knockout of Atg5, which is essential for macroautophagy, as well as in wild-type MEF cells. These results suggest that TBT activates the Keap1-Nrf2 pathway via the reduction in the Keap1 protein level in a macroautophagy-independent manner. The Keap1-Nrf2 pathway is activated by conformational changes in Keap1 induced by reactive oxygen species or electrophiles. Furthermore, any unutilized Keap1 protein is degraded by macroautophagy. Understanding the novel mechanism governing the macroautophagy-independent reduction in Keap1 by TBT may provide insights into the unresolved biological response mechanism against TBT toxicity and the activation mechanism of the Keap1-Nrf2 pathway.</p>\",\"PeriodicalId\":17654,\"journal\":{\"name\":\"Journal of Toxicological Sciences\",\"volume\":\"48 3\",\"pages\":\"161-168\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2131/jts.48.161\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.48.161","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Tributyltin activates the Keap1-Nrf2 pathway via a macroautophagy-independent reduction in Keap1.
Tributyltin (TBT) is an environmental chemical, which was used as an antifouling agent for ships. Although its use has been banned, it is still persistently present in ocean sediments. Although TBT reportedly causes various toxicity in mammals, few studies on the mechanisms of biological response against TBT toxicity exist. The well-established Keap1-Nrf2 pathway is activated as a cytoprotective mechanism under stressful conditions. The relationship between TBT and the Keap1-Nrf2 pathway remains unclear. In the present study, we evaluated the effect of TBT on the Keap1-Nrf2 pathway. TBT reduced Keap1 protein expression in Neuro2a cells, a mouse neuroblastoma cell line, after 6 hr without altering mRNA expression levels. TBT also promoted the nuclear translocation of Nrf2, a transcription factor for antioxidant proteins, after 12 hr and augmented the expression of heme oxygenase 1, a downstream protein of Nrf2. Furthermore, TBT decreased Keap1 levels in mouse embryonic fibroblast (MEF) cells, with the knockout of Atg5, which is essential for macroautophagy, as well as in wild-type MEF cells. These results suggest that TBT activates the Keap1-Nrf2 pathway via the reduction in the Keap1 protein level in a macroautophagy-independent manner. The Keap1-Nrf2 pathway is activated by conformational changes in Keap1 induced by reactive oxygen species or electrophiles. Furthermore, any unutilized Keap1 protein is degraded by macroautophagy. Understanding the novel mechanism governing the macroautophagy-independent reduction in Keap1 by TBT may provide insights into the unresolved biological response mechanism against TBT toxicity and the activation mechanism of the Keap1-Nrf2 pathway.
期刊介绍:
The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.