Medad C C Monu, Yalda Afkham, Josiah C Chekotu, Emmanuel J Ekoi, Hengfeng Gu, Chong Teng, Jon Ginn, Jennifer Gaughran, Dermot Brabazon
{"title":"双向扫描模式对竣工镍钛诺部件残余应力和变形的影响:趋势分析模拟研究","authors":"Medad C C Monu, Yalda Afkham, Josiah C Chekotu, Emmanuel J Ekoi, Hengfeng Gu, Chong Teng, Jon Ginn, Jennifer Gaughran, Dermot Brabazon","doi":"10.1007/s40192-023-00292-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a part-scale simulation study on the effects of bi-directional scanning patterns (BDSP) on residual stress and distortion formation in additively manufactured Nitinol (NiTi) parts is presented. The additive manufacturing technique of focus is powder bed fusion using a laser beam (PBF-LB), and simulation was performed using Ansys Additive Print software. The numerical approach adopted in the simulation was based on the isotropic inherent strain model, due to prohibitive material property requirements and computational limitations of full-fledged part-scale 3D thermomechanical finite element approaches. In this work, reconstructed 2D and 3D thermograms (heat maps) from in situ melt pool thermal radiation data, the predicted residual stresses, and distortions from the simulation study were correlated for PBF-LB processed NiTi samples using selected BDSPs. The distortion and residual stress distribution were found to vary greatly between BDSPs with no laser scan vector rotations per new layer, whereas negligible variations were observed for BDSPs with laser scan vector rotations per new layer. The striking similarities between the reconstructed thermograms of the first few layers and the simulated stress contours of the first lumped layer provide a practical understanding of the temperature gradient mechanism of residual stress formation in PBF-LB processed NiTi. This study provides a qualitative, yet practical insight towards understanding the trends of formation and evolution of residual stress and distortion, due to scanning patterns.</p>","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974685/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bi-directional Scan Pattern Effects on Residual Stresses and Distortion in As-built Nitinol Parts: A Trend Analysis Simulation Study.\",\"authors\":\"Medad C C Monu, Yalda Afkham, Josiah C Chekotu, Emmanuel J Ekoi, Hengfeng Gu, Chong Teng, Jon Ginn, Jennifer Gaughran, Dermot Brabazon\",\"doi\":\"10.1007/s40192-023-00292-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a part-scale simulation study on the effects of bi-directional scanning patterns (BDSP) on residual stress and distortion formation in additively manufactured Nitinol (NiTi) parts is presented. The additive manufacturing technique of focus is powder bed fusion using a laser beam (PBF-LB), and simulation was performed using Ansys Additive Print software. The numerical approach adopted in the simulation was based on the isotropic inherent strain model, due to prohibitive material property requirements and computational limitations of full-fledged part-scale 3D thermomechanical finite element approaches. In this work, reconstructed 2D and 3D thermograms (heat maps) from in situ melt pool thermal radiation data, the predicted residual stresses, and distortions from the simulation study were correlated for PBF-LB processed NiTi samples using selected BDSPs. The distortion and residual stress distribution were found to vary greatly between BDSPs with no laser scan vector rotations per new layer, whereas negligible variations were observed for BDSPs with laser scan vector rotations per new layer. The striking similarities between the reconstructed thermograms of the first few layers and the simulated stress contours of the first lumped layer provide a practical understanding of the temperature gradient mechanism of residual stress formation in PBF-LB processed NiTi. This study provides a qualitative, yet practical insight towards understanding the trends of formation and evolution of residual stress and distortion, due to scanning patterns.</p>\",\"PeriodicalId\":13604,\"journal\":{\"name\":\"Integrating Materials and Manufacturing Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974685/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrating Materials and Manufacturing Innovation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40192-023-00292-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40192-023-00292-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Bi-directional Scan Pattern Effects on Residual Stresses and Distortion in As-built Nitinol Parts: A Trend Analysis Simulation Study.
In this paper, a part-scale simulation study on the effects of bi-directional scanning patterns (BDSP) on residual stress and distortion formation in additively manufactured Nitinol (NiTi) parts is presented. The additive manufacturing technique of focus is powder bed fusion using a laser beam (PBF-LB), and simulation was performed using Ansys Additive Print software. The numerical approach adopted in the simulation was based on the isotropic inherent strain model, due to prohibitive material property requirements and computational limitations of full-fledged part-scale 3D thermomechanical finite element approaches. In this work, reconstructed 2D and 3D thermograms (heat maps) from in situ melt pool thermal radiation data, the predicted residual stresses, and distortions from the simulation study were correlated for PBF-LB processed NiTi samples using selected BDSPs. The distortion and residual stress distribution were found to vary greatly between BDSPs with no laser scan vector rotations per new layer, whereas negligible variations were observed for BDSPs with laser scan vector rotations per new layer. The striking similarities between the reconstructed thermograms of the first few layers and the simulated stress contours of the first lumped layer provide a practical understanding of the temperature gradient mechanism of residual stress formation in PBF-LB processed NiTi. This study provides a qualitative, yet practical insight towards understanding the trends of formation and evolution of residual stress and distortion, due to scanning patterns.
期刊介绍:
The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.