{"title":"基于改进Wildes方法的噪声虹膜平滑与分割方案。","authors":"Anchal Kumawat, Sucheta Panda","doi":"10.1007/s11045-022-00852-w","DOIUrl":null,"url":null,"abstract":"<p><p>In an automated iris recognition system, in order to get higher accuracy, we should have an efficient iris segmentation process. The reliability of accurate \"iris recognition\" system largely depends on the accuracy of segmentation process. Traditional \"iris segmentation\" methods are unable to detect the exact boundaries of iris and pupil, which is time consuming and also highly sensitive to noise. To overcome these problems, we have proposed an improved Wildes method (IWM) for segmentation in iris recognition system. The proposed algorithm consists of two major steps before applying Wildes method for segmentation: edge detection of iris and pupil from a noisy eye image with improved Canny with fuzzy logic (ICWFL) and removal of unwanted noise from above step with a hybrid restoration fusion filter (HRFF). A comparative study of various edge detection techniques is performed to prove the efficiency of ICWFL method. Similarly, the proposed method is tested with various noise densities from 10 to 95 dB. Also the working of the proposed HRFF is compared with some existing smoothing filters. Various experiments have been performed with the help of iris database of IIT_Delhi. Both visual and numerical results prove the efficiency of the proposed algorithm.</p>","PeriodicalId":19030,"journal":{"name":"Multidimensional Systems and Signal Processing","volume":"34 1","pages":"47-79"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516538/pdf/","citationCount":"0","resultStr":"{\"title\":\"Noisy iris smoothing and segmentation scheme based on improved Wildes method.\",\"authors\":\"Anchal Kumawat, Sucheta Panda\",\"doi\":\"10.1007/s11045-022-00852-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In an automated iris recognition system, in order to get higher accuracy, we should have an efficient iris segmentation process. The reliability of accurate \\\"iris recognition\\\" system largely depends on the accuracy of segmentation process. Traditional \\\"iris segmentation\\\" methods are unable to detect the exact boundaries of iris and pupil, which is time consuming and also highly sensitive to noise. To overcome these problems, we have proposed an improved Wildes method (IWM) for segmentation in iris recognition system. The proposed algorithm consists of two major steps before applying Wildes method for segmentation: edge detection of iris and pupil from a noisy eye image with improved Canny with fuzzy logic (ICWFL) and removal of unwanted noise from above step with a hybrid restoration fusion filter (HRFF). A comparative study of various edge detection techniques is performed to prove the efficiency of ICWFL method. Similarly, the proposed method is tested with various noise densities from 10 to 95 dB. Also the working of the proposed HRFF is compared with some existing smoothing filters. Various experiments have been performed with the help of iris database of IIT_Delhi. Both visual and numerical results prove the efficiency of the proposed algorithm.</p>\",\"PeriodicalId\":19030,\"journal\":{\"name\":\"Multidimensional Systems and Signal Processing\",\"volume\":\"34 1\",\"pages\":\"47-79\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multidimensional Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11045-022-00852-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidimensional Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11045-022-00852-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Noisy iris smoothing and segmentation scheme based on improved Wildes method.
In an automated iris recognition system, in order to get higher accuracy, we should have an efficient iris segmentation process. The reliability of accurate "iris recognition" system largely depends on the accuracy of segmentation process. Traditional "iris segmentation" methods are unable to detect the exact boundaries of iris and pupil, which is time consuming and also highly sensitive to noise. To overcome these problems, we have proposed an improved Wildes method (IWM) for segmentation in iris recognition system. The proposed algorithm consists of two major steps before applying Wildes method for segmentation: edge detection of iris and pupil from a noisy eye image with improved Canny with fuzzy logic (ICWFL) and removal of unwanted noise from above step with a hybrid restoration fusion filter (HRFF). A comparative study of various edge detection techniques is performed to prove the efficiency of ICWFL method. Similarly, the proposed method is tested with various noise densities from 10 to 95 dB. Also the working of the proposed HRFF is compared with some existing smoothing filters. Various experiments have been performed with the help of iris database of IIT_Delhi. Both visual and numerical results prove the efficiency of the proposed algorithm.
期刊介绍:
Multidimensional Systems and Signal Processing publishes research and selective surveys papers ranging from the fundamentals to important new findings. The journal responds to and provides a solution to the widely scattered nature of publications in this area, offering unity of theme, reduced duplication of effort, and greatly enhanced communication among researchers and practitioners in the field.
A partial list of topics addressed in the journal includes multidimensional control systems design and implementation; multidimensional stability and realization theory; prediction and filtering of multidimensional processes; Spatial-temporal signal processing; multidimensional filters and filter-banks; array signal processing; and applications of multidimensional systems and signal processing to areas such as healthcare and 3-D imaging techniques.