从不可靠的数据中得出可靠的网络推断:使用 STRAND 的潜在网络建模教程。

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Psychological methods Pub Date : 2024-12-01 Epub Date: 2023-03-06 DOI:10.1037/met0000519
Daniel Redhead, Richard McElreath, Cody T Ross
{"title":"从不可靠的数据中得出可靠的网络推断:使用 STRAND 的潜在网络建模教程。","authors":"Daniel Redhead, Richard McElreath, Cody T Ross","doi":"10.1037/met0000519","DOIUrl":null,"url":null,"abstract":"<p><p>Social network analysis provides an important framework for studying the causes, consequences, and structure of social ties. However, standard self-report measures-for example, as collected through the popular \"name-generator\" method-do not provide an impartial representation of such ties, be they transfers, interactions, or social relationships. At best, they represent perceptions filtered through the cognitive biases of respondents. Individuals may, for example, report transfers that did not really occur, or forget to mention transfers that really did. The propensity to make such reporting inaccuracies is both an individual-level and item-level characteristic-variable across members of any given group. Past research has highlighted that many network-level properties are highly sensitive to such reporting inaccuracies. However, there remains a dearth of easily deployed statistical tools that account for such biases. To address this issue, we provide a latent network model that allows researchers to jointly estimate parameters measuring both reporting biases and a latent, underlying social network. Building upon past research, we conduct several simulation experiments in which network data are subject to various reporting biases, and find that these reporting biases strongly impact fundamental network properties. These impacts are not adequately remedied using the most frequently deployed approaches for network reconstruction in the social sciences (i.e., treating either the union or the intersection of double-sampled data as the true network), but are appropriately resolved through the use of our latent network models. To make implementation of our models easier for end-users, we provide a fully documented R package, STRAND, and include a tutorial illustrating its functionality when applied to empirical food/money sharing data from a rural Colombian population. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"1100-1122"},"PeriodicalIF":7.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable network inference from unreliable data: A tutorial on latent network modeling using STRAND.\",\"authors\":\"Daniel Redhead, Richard McElreath, Cody T Ross\",\"doi\":\"10.1037/met0000519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Social network analysis provides an important framework for studying the causes, consequences, and structure of social ties. However, standard self-report measures-for example, as collected through the popular \\\"name-generator\\\" method-do not provide an impartial representation of such ties, be they transfers, interactions, or social relationships. At best, they represent perceptions filtered through the cognitive biases of respondents. Individuals may, for example, report transfers that did not really occur, or forget to mention transfers that really did. The propensity to make such reporting inaccuracies is both an individual-level and item-level characteristic-variable across members of any given group. Past research has highlighted that many network-level properties are highly sensitive to such reporting inaccuracies. However, there remains a dearth of easily deployed statistical tools that account for such biases. To address this issue, we provide a latent network model that allows researchers to jointly estimate parameters measuring both reporting biases and a latent, underlying social network. Building upon past research, we conduct several simulation experiments in which network data are subject to various reporting biases, and find that these reporting biases strongly impact fundamental network properties. These impacts are not adequately remedied using the most frequently deployed approaches for network reconstruction in the social sciences (i.e., treating either the union or the intersection of double-sampled data as the true network), but are appropriately resolved through the use of our latent network models. To make implementation of our models easier for end-users, we provide a fully documented R package, STRAND, and include a tutorial illustrating its functionality when applied to empirical food/money sharing data from a rural Colombian population. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"1100-1122\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000519\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000519","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

社会网络分析为研究社会联系的原因、后果和结构提供了一个重要框架。然而,标准的自我报告测量方法--例如,通过流行的 "姓名生成器 "方法收集的数据--并不能公正地反映这种联系,无论是转移、互动还是社会关系。充其量,它们代表的是经过受访者认知偏差过滤的看法。例如,个人可能会报告并未真正发生的转移,或忘记提及真正发生的转移。这种报告不准确的倾向既是个人层面的特征,也是项目层面的特征--在任何特定群体的成员中都是可变的。过去的研究强调,许多网络层面的属性对此类报告不准确性高度敏感。然而,目前仍缺乏易于使用的统计工具来解释此类偏差。为了解决这个问题,我们提供了一个潜在网络模型,使研究人员能够共同估算出衡量报告偏差和潜在社会网络的参数。在过去研究的基础上,我们进行了几项模拟实验,在这些实验中,网络数据受到各种报告偏差的影响,并发现这些报告偏差对基本网络属性产生了强烈的影响。使用社会科学中最常用的网络重构方法(即把双重采样数据的联合或交集视为真实网络)并不能充分弥补这些影响,但通过使用我们的潜在网络模型,这些影响得到了适当的解决。为了使最终用户更容易实施我们的模型,我们提供了一个文档齐全的 R 软件包 STRAND,并附带了一个教程,说明该软件包在哥伦比亚农村人口的食物/金钱分享实证数据中的功能。(PsycInfo Database Record (c) 2023 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable network inference from unreliable data: A tutorial on latent network modeling using STRAND.

Social network analysis provides an important framework for studying the causes, consequences, and structure of social ties. However, standard self-report measures-for example, as collected through the popular "name-generator" method-do not provide an impartial representation of such ties, be they transfers, interactions, or social relationships. At best, they represent perceptions filtered through the cognitive biases of respondents. Individuals may, for example, report transfers that did not really occur, or forget to mention transfers that really did. The propensity to make such reporting inaccuracies is both an individual-level and item-level characteristic-variable across members of any given group. Past research has highlighted that many network-level properties are highly sensitive to such reporting inaccuracies. However, there remains a dearth of easily deployed statistical tools that account for such biases. To address this issue, we provide a latent network model that allows researchers to jointly estimate parameters measuring both reporting biases and a latent, underlying social network. Building upon past research, we conduct several simulation experiments in which network data are subject to various reporting biases, and find that these reporting biases strongly impact fundamental network properties. These impacts are not adequately remedied using the most frequently deployed approaches for network reconstruction in the social sciences (i.e., treating either the union or the intersection of double-sampled data as the true network), but are appropriately resolved through the use of our latent network models. To make implementation of our models easier for end-users, we provide a fully documented R package, STRAND, and include a tutorial illustrating its functionality when applied to empirical food/money sharing data from a rural Colombian population. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信