David W Allison, Justin W Silverstein, Shanti S Thirumalai, Randy S D'Amico
{"title":"IONM的误解第三部分:刺激重复率对术中体感觉诱发电位振幅和潜伏期的影响。","authors":"David W Allison, Justin W Silverstein, Shanti S Thirumalai, Randy S D'Amico","doi":"10.1080/21646821.2022.2141553","DOIUrl":null,"url":null,"abstract":"<p><p>The rate at which stimulation is applied to peripheral nerves is critical to generating high-quality intraoperative somatosensory evoked potentials (SSEPs) in a timely manner. Guidelines based on a limited study and anecdotal evidence present differing, incorrect, or incomplete stimulation rate recommendations. We examined the effect stimulating the ulnar and tibial nerves at 1.05, 2.79, 5.69, and 8.44 Hz had on cortical, subcortical, and peripheral response amplitude and latency in 10 subjects with neuromuscular blockade (NMB) and 10 without NMB in the operating room under general anesthesia. As the stimulation repetition rate increased, the amplitude of upper and lower extremity cortical responses decreased equally in both groups. The ulnar nerve N20 cortical response amplitude decreased 27.9% at 2.79 Hz, 48.8% at 5.69 Hz, and 53.8% at 8.44 Hz. The tibial nerve P37 cortical response amplitude decreased 30.3% at 2.79 Hz, 53.8% at 5.69 Hz, and 56.8% at 8.44 Hz. Neither upper or lower extremity peripheral or subcortical amplitudes nor upper and lower extremity subcortical or peripheral latencies were affected by increasing repetition rate in either group. Low SSEP stimulation repetition rates ensure the highest quality cortical responses.</p>","PeriodicalId":22816,"journal":{"name":"The Neurodiagnostic Journal","volume":"62 4","pages":"239-250"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Misconceptions in IONM Part III: Stimulation Repetition Rate Effects on Intraoperative Somatosensory Evoked Potential Amplitude and Latency.\",\"authors\":\"David W Allison, Justin W Silverstein, Shanti S Thirumalai, Randy S D'Amico\",\"doi\":\"10.1080/21646821.2022.2141553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rate at which stimulation is applied to peripheral nerves is critical to generating high-quality intraoperative somatosensory evoked potentials (SSEPs) in a timely manner. Guidelines based on a limited study and anecdotal evidence present differing, incorrect, or incomplete stimulation rate recommendations. We examined the effect stimulating the ulnar and tibial nerves at 1.05, 2.79, 5.69, and 8.44 Hz had on cortical, subcortical, and peripheral response amplitude and latency in 10 subjects with neuromuscular blockade (NMB) and 10 without NMB in the operating room under general anesthesia. As the stimulation repetition rate increased, the amplitude of upper and lower extremity cortical responses decreased equally in both groups. The ulnar nerve N20 cortical response amplitude decreased 27.9% at 2.79 Hz, 48.8% at 5.69 Hz, and 53.8% at 8.44 Hz. The tibial nerve P37 cortical response amplitude decreased 30.3% at 2.79 Hz, 53.8% at 5.69 Hz, and 56.8% at 8.44 Hz. Neither upper or lower extremity peripheral or subcortical amplitudes nor upper and lower extremity subcortical or peripheral latencies were affected by increasing repetition rate in either group. Low SSEP stimulation repetition rates ensure the highest quality cortical responses.</p>\",\"PeriodicalId\":22816,\"journal\":{\"name\":\"The Neurodiagnostic Journal\",\"volume\":\"62 4\",\"pages\":\"239-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Neurodiagnostic Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21646821.2022.2141553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Neurodiagnostic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21646821.2022.2141553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
Misconceptions in IONM Part III: Stimulation Repetition Rate Effects on Intraoperative Somatosensory Evoked Potential Amplitude and Latency.
The rate at which stimulation is applied to peripheral nerves is critical to generating high-quality intraoperative somatosensory evoked potentials (SSEPs) in a timely manner. Guidelines based on a limited study and anecdotal evidence present differing, incorrect, or incomplete stimulation rate recommendations. We examined the effect stimulating the ulnar and tibial nerves at 1.05, 2.79, 5.69, and 8.44 Hz had on cortical, subcortical, and peripheral response amplitude and latency in 10 subjects with neuromuscular blockade (NMB) and 10 without NMB in the operating room under general anesthesia. As the stimulation repetition rate increased, the amplitude of upper and lower extremity cortical responses decreased equally in both groups. The ulnar nerve N20 cortical response amplitude decreased 27.9% at 2.79 Hz, 48.8% at 5.69 Hz, and 53.8% at 8.44 Hz. The tibial nerve P37 cortical response amplitude decreased 30.3% at 2.79 Hz, 53.8% at 5.69 Hz, and 56.8% at 8.44 Hz. Neither upper or lower extremity peripheral or subcortical amplitudes nor upper and lower extremity subcortical or peripheral latencies were affected by increasing repetition rate in either group. Low SSEP stimulation repetition rates ensure the highest quality cortical responses.
期刊介绍:
The Neurodiagnostic Journal is the official journal of ASET - The Neurodiagnostic Society. It serves as an educational resource for Neurodiagnostic professionals, a vehicle for introducing new techniques and innovative technologies in the field, patient safety and advocacy, and an avenue for sharing best practices within the Neurodiagnostic Technology profession. The journal features original articles about electroencephalography (EEG), evoked potentials (EP), intraoperative neuromonitoring (IONM), nerve conduction (NC), polysomnography (PSG), autonomic testing, and long-term monitoring (LTM) in the intensive care (ICU) and epilepsy monitoring units (EMU). Subject matter also includes education, training, lab management, legislative and licensure needs, guidelines for standards of care, and the impact of our profession in healthcare and society. The journal seeks to foster ideas, commentary, and news from technologists, physicians, clinicians, managers/leaders, and professional organizations, and to introduce trends and the latest developments in the field of neurodiagnostics. Media reviews, case studies, ASET Annual Conference proceedings, review articles, and quizzes for ASET-CEUs are also published in The Neurodiagnostic Journal.