Syed Agha Hassnain Mohsan, Nawaf Qasem Hamood Othman, Yanlong Li, Mohammed H Alsharif, Muhammad Asghar Khan
{"title":"无人驾驶飞行器(uav):实际方面,应用,开放挑战,安全问题和未来趋势。","authors":"Syed Agha Hassnain Mohsan, Nawaf Qasem Hamood Othman, Yanlong Li, Mohammed H Alsharif, Muhammad Asghar Khan","doi":"10.1007/s11370-022-00452-4","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, unmanned aerial vehicles (UAVs) or drones have emerged as a ubiquitous and integral part of our society. They appear in great diversity in a multiplicity of applications for economic, commercial, leisure, military and academic purposes. The drone industry has seen a sharp uptake in the last decade as a model to manufacture and deliver convergence, offering synergy by incorporating multiple technologies. It is due to technological trends and rapid advancements in control, miniaturization, and computerization, which culminate in secure, lightweight, robust, more-accessible and cost-efficient UAVs. UAVs support implicit particularities including access to disaster-stricken zones, swift mobility, airborne missions and payload features. Despite these appealing benefits, UAVs face limitations in operability due to several critical concerns in terms of flight autonomy, path planning, battery endurance, flight time and limited payload carrying capability, as intuitively it is not recommended to load heavy objects such as batteries. As a result, the primary goal of this research is to provide insights into the potentials of UAVs, as well as their characteristics and functionality issues. This study provides a comprehensive review of UAVs, types, swarms, classifications, charging methods and regulations. Moreover, application scenarios, potential challenges and security issues are also examined. Finally, future research directions are identified to further hone the research work. We believe these insights will serve as guidelines and motivations for relevant researchers.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"16 1","pages":"109-137"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841964/pdf/","citationCount":"43","resultStr":"{\"title\":\"Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends.\",\"authors\":\"Syed Agha Hassnain Mohsan, Nawaf Qasem Hamood Othman, Yanlong Li, Mohammed H Alsharif, Muhammad Asghar Khan\",\"doi\":\"10.1007/s11370-022-00452-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, unmanned aerial vehicles (UAVs) or drones have emerged as a ubiquitous and integral part of our society. They appear in great diversity in a multiplicity of applications for economic, commercial, leisure, military and academic purposes. The drone industry has seen a sharp uptake in the last decade as a model to manufacture and deliver convergence, offering synergy by incorporating multiple technologies. It is due to technological trends and rapid advancements in control, miniaturization, and computerization, which culminate in secure, lightweight, robust, more-accessible and cost-efficient UAVs. UAVs support implicit particularities including access to disaster-stricken zones, swift mobility, airborne missions and payload features. Despite these appealing benefits, UAVs face limitations in operability due to several critical concerns in terms of flight autonomy, path planning, battery endurance, flight time and limited payload carrying capability, as intuitively it is not recommended to load heavy objects such as batteries. As a result, the primary goal of this research is to provide insights into the potentials of UAVs, as well as their characteristics and functionality issues. This study provides a comprehensive review of UAVs, types, swarms, classifications, charging methods and regulations. Moreover, application scenarios, potential challenges and security issues are also examined. Finally, future research directions are identified to further hone the research work. We believe these insights will serve as guidelines and motivations for relevant researchers.</p>\",\"PeriodicalId\":48813,\"journal\":{\"name\":\"Intelligent Service Robotics\",\"volume\":\"16 1\",\"pages\":\"109-137\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841964/pdf/\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Service Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11370-022-00452-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-022-00452-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends.
Recently, unmanned aerial vehicles (UAVs) or drones have emerged as a ubiquitous and integral part of our society. They appear in great diversity in a multiplicity of applications for economic, commercial, leisure, military and academic purposes. The drone industry has seen a sharp uptake in the last decade as a model to manufacture and deliver convergence, offering synergy by incorporating multiple technologies. It is due to technological trends and rapid advancements in control, miniaturization, and computerization, which culminate in secure, lightweight, robust, more-accessible and cost-efficient UAVs. UAVs support implicit particularities including access to disaster-stricken zones, swift mobility, airborne missions and payload features. Despite these appealing benefits, UAVs face limitations in operability due to several critical concerns in terms of flight autonomy, path planning, battery endurance, flight time and limited payload carrying capability, as intuitively it is not recommended to load heavy objects such as batteries. As a result, the primary goal of this research is to provide insights into the potentials of UAVs, as well as their characteristics and functionality issues. This study provides a comprehensive review of UAVs, types, swarms, classifications, charging methods and regulations. Moreover, application scenarios, potential challenges and security issues are also examined. Finally, future research directions are identified to further hone the research work. We believe these insights will serve as guidelines and motivations for relevant researchers.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).