Eric S. Kawaguchi, Andre E. Kim, Juan Pablo Lewinger, W. James Gauderman
{"title":"改进了全基因组基因-环境相互作用的两步检测","authors":"Eric S. Kawaguchi, Andre E. Kim, Juan Pablo Lewinger, W. James Gauderman","doi":"10.1002/gepi.22509","DOIUrl":null,"url":null,"abstract":"<p>Two-step tests for gene–environment (<math>\n <semantics>\n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <mi>E</mi>\n </mrow>\n <annotation> $G\\times E$</annotation>\n </semantics></math>) interactions exploit marginal single-nucleotide polymorphism (SNP) effects to improve the power of a genome-wide interaction scan. They combine a screening step based on marginal effects used to “bin” SNPs for weighted hypothesis testing in the second step to deliver greater power over single-step tests while preserving the genome-wide Type I error. However, the presence of many SNPs with detectable marginal effects on the trait of interest can reduce power by “displacing” true interactions with weaker marginal effects and by adding to the number of tests that need to be corrected for multiple testing. We introduce a new significance-based allocation into bins for Step-2 <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <mi>E</mi>\n </mrow>\n <annotation> $G\\times E$</annotation>\n </semantics></math> testing that overcomes the displacement issue and propose a computationally efficient approach to account for multiple testing within bins. Simulation results demonstrate that these simple improvements can provide substantially greater power than current methods under several scenarios. An application to a multistudy collaboration for understanding colorectal cancer reveals a <i>G</i> × Sex interaction located near the SMAD7 gene.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 2","pages":"152-166"},"PeriodicalIF":1.7000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22509","citationCount":"1","resultStr":"{\"title\":\"Improved two-step testing of genome-wide gene–environment interactions\",\"authors\":\"Eric S. Kawaguchi, Andre E. Kim, Juan Pablo Lewinger, W. James Gauderman\",\"doi\":\"10.1002/gepi.22509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-step tests for gene–environment (<math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <mi>E</mi>\\n </mrow>\\n <annotation> $G\\\\times E$</annotation>\\n </semantics></math>) interactions exploit marginal single-nucleotide polymorphism (SNP) effects to improve the power of a genome-wide interaction scan. They combine a screening step based on marginal effects used to “bin” SNPs for weighted hypothesis testing in the second step to deliver greater power over single-step tests while preserving the genome-wide Type I error. However, the presence of many SNPs with detectable marginal effects on the trait of interest can reduce power by “displacing” true interactions with weaker marginal effects and by adding to the number of tests that need to be corrected for multiple testing. We introduce a new significance-based allocation into bins for Step-2 <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <mi>E</mi>\\n </mrow>\\n <annotation> $G\\\\times E$</annotation>\\n </semantics></math> testing that overcomes the displacement issue and propose a computationally efficient approach to account for multiple testing within bins. Simulation results demonstrate that these simple improvements can provide substantially greater power than current methods under several scenarios. An application to a multistudy collaboration for understanding colorectal cancer reveals a <i>G</i> × Sex interaction located near the SMAD7 gene.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"47 2\",\"pages\":\"152-166\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22509\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22509\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22509","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Improved two-step testing of genome-wide gene–environment interactions
Two-step tests for gene–environment () interactions exploit marginal single-nucleotide polymorphism (SNP) effects to improve the power of a genome-wide interaction scan. They combine a screening step based on marginal effects used to “bin” SNPs for weighted hypothesis testing in the second step to deliver greater power over single-step tests while preserving the genome-wide Type I error. However, the presence of many SNPs with detectable marginal effects on the trait of interest can reduce power by “displacing” true interactions with weaker marginal effects and by adding to the number of tests that need to be corrected for multiple testing. We introduce a new significance-based allocation into bins for Step-2 testing that overcomes the displacement issue and propose a computationally efficient approach to account for multiple testing within bins. Simulation results demonstrate that these simple improvements can provide substantially greater power than current methods under several scenarios. An application to a multistudy collaboration for understanding colorectal cancer reveals a G × Sex interaction located near the SMAD7 gene.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.