{"title":"投影平均的尖锐Sobolev不等式。","authors":"Philipp Kniefacz, Franz E Schuster","doi":"10.1007/s12220-020-00544-6","DOIUrl":null,"url":null,"abstract":"<p><p>A family of sharp <math><msup><mi>L</mi> <mi>p</mi></msup> </math> Sobolev inequalities is established by averaging the length of <i>i</i>-dimensional projections of the gradient of a function. Moreover, it is shown that each of these new inequalities directly implies the classical <math><msup><mi>L</mi> <mi>p</mi></msup> </math> Sobolev inequality of Aubin and Talenti and that the strongest member of this family is the only affine invariant one among them-the affine <math><msup><mi>L</mi> <mi>p</mi></msup> </math> Sobolev inequality of Lutwak, Yang, and Zhang. When <math><mrow><mi>p</mi> <mo>=</mo> <mn>1</mn></mrow> </math> , the entire family of new Sobolev inequalities is extended to functions of bounded variation to also allow for a complete classification of all extremal functions in this case.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-020-00544-6","citationCount":"6","resultStr":"{\"title\":\"Sharp Sobolev Inequalities via Projection Averages.\",\"authors\":\"Philipp Kniefacz, Franz E Schuster\",\"doi\":\"10.1007/s12220-020-00544-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A family of sharp <math><msup><mi>L</mi> <mi>p</mi></msup> </math> Sobolev inequalities is established by averaging the length of <i>i</i>-dimensional projections of the gradient of a function. Moreover, it is shown that each of these new inequalities directly implies the classical <math><msup><mi>L</mi> <mi>p</mi></msup> </math> Sobolev inequality of Aubin and Talenti and that the strongest member of this family is the only affine invariant one among them-the affine <math><msup><mi>L</mi> <mi>p</mi></msup> </math> Sobolev inequality of Lutwak, Yang, and Zhang. When <math><mrow><mi>p</mi> <mo>=</mo> <mn>1</mn></mrow> </math> , the entire family of new Sobolev inequalities is extended to functions of bounded variation to also allow for a complete classification of all extremal functions in this case.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12220-020-00544-6\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-020-00544-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-020-00544-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
摘要
通过对函数梯度的i维投影的长度求平均值,建立了一类尖锐的L p Sobolev不等式。此外,还证明了这些新不等式中的每一个都直接暗示了Aubin和Talenti的经典L p Sobolev不等式,并且该家族中最强的成员是其中唯一的仿射不变量- Lutwak, Yang和Zhang的仿射L p Sobolev不等式。当p = 1时,整个新Sobolev不等式族被推广到有界变分函数,从而也允许在这种情况下对所有极值函数进行完全分类。
Sharp Sobolev Inequalities via Projection Averages.
A family of sharp Sobolev inequalities is established by averaging the length of i-dimensional projections of the gradient of a function. Moreover, it is shown that each of these new inequalities directly implies the classical Sobolev inequality of Aubin and Talenti and that the strongest member of this family is the only affine invariant one among them-the affine Sobolev inequality of Lutwak, Yang, and Zhang. When , the entire family of new Sobolev inequalities is extended to functions of bounded variation to also allow for a complete classification of all extremal functions in this case.
期刊介绍:
JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.